Effect of extrusion ratio on microstructure and properties of Al-0.68Mg-0.60Si alloy
LI Zi-fu1,2, DENG Yun-lai1,2,3, ZHANG Zhen1,2, SUN Lin4, ZHANG Yi-dan2,3, SUN Quan2,3
1. Light Alloy Research Institute, Central South University, Changsha 410083, China;
2. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China;
3. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
4. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, Shandong, China
Abstract:The effects of extrusion ratio on microstructure and properties of Al-0.68Mg-0.60Si alloy were studied by optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), transmission electron microscope (TEM), hardness test and tensile test at room temperature. The results show that with the increase of extrusion ratio, the size of the dispersed particles in the matrix of Al-0.68Mg-0.60Si alloy profile decreases gradually, the degree of dispersion increases, the fraction of small angle grain boundaries decreases, but the recrystallization fraction increases. When the extrusion ratio reaches above 39.6, the texture of the alloy is cubic texture. In addition, in the extrusion deformation process, the hardness and tensile strength of the alloy profile increase first and then decrease with the increase of extrusion ratio (λ=26.8-55.7);when λ is 39.6, the maximum tensile strength of the alloy reaches 284.00MPa.
李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
LI Zi-fu, DENG Yun-lai, ZHANG Zhen, SUN Lin, ZHANG Yi-dan, SUN Quan. Effect of extrusion ratio on microstructure and properties of Al-0.68Mg-0.60Si alloy. Journal of Materials Engineering, 2019, 47(10): 60-67.
[1] 贾志宏,丁立鹏,吴赛楠,等. 汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展[J]. 材料工程,2014(12):104-113. JIA Z H, DING L P, WU S N, et al. Research progress on microstructure and heat treatment of 6000 series aluminum alloys sheet for automotive body[J]. Journal of Materials Engineering, 2014(12):104-113.
[2] 陈灿龙. 高速列车用6N01铝合金弯曲行为研究[D]. 南京:南京理工大学,2015. CHEN C L. The bending behavior of 6N01 aluminum profile for high speed train[D]. Nanjing:Nanjing University of Science and Technology, 2015.
[3] 宋满新,邓运来,陈龙,等. Ge对汽车车身板用Al-Mg-Si系铝合金组织和性能的影响[J]. 热加工工艺,2014,43(6):76-80. SONG M X, DENG Y L, CHEN L, et al. Influence of Ge on microstructure and properties of Al-Mg-Si alloy for automobile panels[J]. Hot Working Technology, 2014,43(6):76-80.
[4] 张迎晖,黎翔,杨正斌,等. 预变形对Al-Mg-Si系合金组织及力学性能的影响[J]. 金属热处理,2018,43(6):165-169. ZHANG Y H, LI X, YANG Z B, et al. Effect of pre-deformation on microstructure and mechanical properties of Al-Mg-Si series alloy[J]. Heat Treatment of Metals, 2018,43(6):165-169.
[5] 王刚,王明坤. 轨道交通用铝合金挤压型材的发展现状[J]. 世界有色金属,2016(10):23-25. WANG G, WANG M K. Development status of aluminum alloy extruded profiles for rail transit[J]. World Nonferrous Metals, 2016(10):23-25.
[6] QI J L, WANG Z Y, LIN J H, et al. Graphene-enhanced Cu composite interlayer for contact reaction brazing aluminum alloy 6061[J]. Vacuum, 2017,136(2):142-145.
[7] 王询,林建平,万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程,2017,45(8):123-131. WANG X, LIN J P, WAN H L. Research progress in effect of aluminum surface properties on adhesively bonded performance[J]. Journal of Materials Engineering, 2017,45(8):123-131.
[8] 叶青. 轨道交通用6005A合金挤压型材的疲劳性能研究[D]. 赣州:江西理工大学,2018. YE Q. Fatigue behavior of 6005A alloy extruded profile for rail transit[D].Ganzhou:Jiangxi University of Science and Techn-ology, 2018.
[9] 郑红梅,胡学飞,崔接武,等. Sc元素对Al-Mg-Si架空导线的组织及性能影响[J]. 材料热处理学报,2017,38(9):43-48. ZHENG H M, HU X F, CUI J W, et al. Effect of Sc on microstructure and performance of Al-Mg-Si aerial cables[J]. Transactions of Materials and Heat Treatment,2017,38(9):43-48.
[10] ÖZYVREK D,TUNÇAY T,KAYA H. The effects of T5 and T6 heat treatments on wear behaviour of AA6063 alloy[J]. High Temperature Materials and Processes, 2014,33(3):231-237.
[11] YU H C, WANG H Y, CHEN L, et al. Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process[J]. Materials Science and Engineering:A, 2017,685:31-38.
[12] 夏菲,夏宗泽,黄笑伯. 热处理工艺对Al-Mg-Si合金导电性及力学性能的影响[J]. 铸造技术,2015,36(7):1736-1738. XIA F, XIA Z Z, HUANG X B. Effect of heat treatment on electrical conductivity and mechanical properties of Al-Mg-Si alloy[J]. Foundry Technology, 2015,36(7):1736-1738.
[13] HU J M, TENG J, JI X K, et al. Enhanced mechanical prope-rties of an Al-Mg-Si alloy by repetitive continuous extrusion forming process and subsequent aging treatment[J]. Materials Science and Engineering:A, 2017,695:35-44.
[14] LI H, WANG J Y, JIANG H T, et al. Characterizations of precipitation behavior of Al-Mg-Si alloys under different heat treatments[J]. China Foundry, 2018,15(2):89-96.
[15] 张新明,周志乐,唐建国,等. Cr元素对Al-Mg-Si-Cu铝合金组织与性能的影响[J]. 材料工程,2013(12):49-53. ZHANG X M, ZHOU Z L, TANG J G, et al. Effects of Cr on microstructure and properties of Al-Mg-Si-Cu aluminum alloy[J]. Journal of Materials Engineering, 2013(12):49-53.
[16] 陆晟. 等通道挤压工艺对Al-Mg-Si合金组织及力学性能影响的研究[D]. 赣州:江西理工大学, 2015. LU S. Effect of equal channel extrusion on microstructure and mechanical properties of Al-Mg-Si alloy[D]. Ganzhou:Jiangxi University of Science and Technology, 2015.
[17] 杨文超. Al-Mg-Si-Cu系6005A合金的时效硬化行为及析出相的微观结构表征[D]. 长沙:中南大学,2011. YANG W C. Age-hardening behavior and microstructural characterization of precipitates in Al-Mg-Si-Cu:6005A alloy[D]. Changsha:Central South University, 2011.
[18] QI Z W, CONG B Q, QI B J, et al. Microstructure and mech-anical properties of double-wire+arc additively manufactured Al-Cu-Mg alloys[J]. Journal of Materials Processing Techn-ology, 2018, 255:347-353.
[19] 李铮,蔡晓兰,周蕾,等. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程,2015,43(8):1-6. LI Z, CAI X L, ZHOU L, et al. Mechanical property and enhancement mechanism of aluminum 5083 composites with carbon nanotubes[J]. Journal of Materials Engineering, 2015,43(8):1-6.