Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 53-59    DOI: 10.11868/j.issn.1001-4381.2018.001077
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
双级时效对汽车用高强铝合金组织性能的影响
李承波1,2, 唐建国1, 邓运来1, 李建湘2, 张新明1
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 广东和胜工业铝材股份有限公司, 广东 中山 528463
Effect of two-step aging on microstructure and properties of high-strength aluminum alloys for automobile
LI Cheng-bo1,2, TANG Jian-guo1, DENG Yun-lai1, LI Jian-xiang2, ZHANG Xin-ming1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Guangdong Hoshion Industrial Aluminium Co., Ltd., Zhongshan 528463, Guangdong, China
全文: PDF(4495 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 高强度铝合金在车身上的应用将是未来汽车轻量化发展趋势。通过拉伸实验、电导率以及高分辨透射电镜研究了双级时效对汽车用高强铝合金组织性能的影响。研究结果表明:时效温度对综合性能的影响比时效时间的要大,双级时效参数中的第二级时效温度的影响最大,随着第二级的时效温度和时效时间增加,时效强化相的尺寸增加,力学性能下降,电导率增加。优化出的T76时效制度为120℃/6h+160℃/12h,时效强化相与基体完全共格,长度方向的尺寸约5~8nm,厚度方向的尺寸约3~5nm;优化出的T73时效制度为120℃/6h+170℃/12h,时效强化相与基体半共格,长度方向的尺寸约8~15nm,厚度方向的尺寸约4~8nm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李承波
唐建国
邓运来
李建湘
张新明
关键词 高强铝合金汽车双级时效显微组织    
Abstract:The application of high-strength aluminum alloy on the vehicle body will be the development trend of automobile lightweight in the future.The effects of two-step aging on the microstructure and properties of high-strength aluminum alloys for automobile were investigated by tensile tests, electrical conductivity, and transmission electron microscopy (high resolution). The effect of aging temperature on the overall performance is greater than the aging time. The effect of the second-stage aging temperature in the two-step aging parameters is the greatest. As the aging temperature and aging time of the second-stage increase, the size of the aging strengthening phase increases. The mechanical properties decrease and the conductivity increases. The optimized T76 aging system is 120℃/6h+160℃/12h. The precipitation phase is completely coherent with the matrix. The size of length is about 5-8nm, and the size of thickness is about 3-5nm. The optimized T73 aging system is 120℃/6h+170℃/12h, the precipitation phase is semi-coherent with the matrix.The size of length is about 8-15nm, and the size of thickness is about 4-8nm.
Key wordshigh-strength aluminum alloys    automobile    two-step aging    microstructure
收稿日期: 2018-09-10      出版日期: 2019-10-12
中图分类号:  TG146.21  
通讯作者: 李承波(1987-),男,博士后,主要从事汽车用高性能铝合金材料制备及焊接技术研究,联系地址:湖南省长沙市中南大学校本部特冶楼419室(410083),E-mail:csulicb@qq.com     E-mail: csulicb@qq.com
引用本文:   
李承波, 唐建国, 邓运来, 李建湘, 张新明. 双级时效对汽车用高强铝合金组织性能的影响[J]. 材料工程, 2019, 47(10): 53-59.
LI Cheng-bo, TANG Jian-guo, DENG Yun-lai, LI Jian-xiang, ZHANG Xin-ming. Effect of two-step aging on microstructure and properties of high-strength aluminum alloys for automobile. Journal of Materials Engineering, 2019, 47(10): 53-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001077      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/53
[1] 徐中明,徐小飞,张志飞,等.保险杠安全性能仿真分析与试验研究[J]. 汽车工程,2014,36(3):293-297. XU Z M, XU X F, ZHANG Z F,et al.Simulation and experimental study on bumper safety performance[J]. Automotive Engineering,2014,36(3):293-297.
[2] 戴明华. 汽车车身6000系铝合金板材温成形技术研究[D]. 大连:大连理工大学,2014. DAI M H. Research on warm forming technology of 6000 series aluminum alloy sheets for automobile body[D]. Dalian:Dalian University of Technology,2014.
[3] 何祝斌,凡晓波,苑世剑.铝合金板材热成形——淬火一体化工艺研究进展[J]. 精密成形工程,2014,6(5):37-44. HE Z B, FAN X B, YUAN S J. Review of hot forming-quenching integrated process of aluminum alloy[J]. Journal of Netshape Forming Engineering,2014,6(5):37-44.
[4] ZANG J X, ZHANG K, DAI S L. Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China,2012,22:2638-2644.
[5] ZHANG Y. Quench sensitivity of 7xxx series aluminium alloys[D]. Melbourne:Monash University,2014.
[6] 马志锋,宋伟,王少华. 时效状态对新型高强铝合金型材力学及腐蚀性能的影响[J]. 金属热处理,2014,39(9):1-5. MA Z F, SONG W, WANG S H. Effects of aging condition on mechanical and corrosion properties of a new type high strength aluminum alloy profile[J]. Heat Treatment of Metals,2014,39(9):1-5.
[7] DENG Y, YIN Z M, ZHAO K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy[J].Corrosion Science, 2012, 65:288-298.
[8] 张勇,李红萍,康唯. 高强铝合金时效微结构演变与性能调控[J]. 中国有色金属学报,2017,27(7):1323-1336. ZHANG Y, LI H P,KANG W. Aging microstructure evolution in high strength aluminum alloys and performance controlling[J]. The Chinese Journal of Nonferrous Metals,2017,27(7):1323-1336.
[9] JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering:A, 2014, 605(27):167-175.
[10] 姚晓红,张林,高文理. 时效状态对7A85高强铝合金力学性能和晶间腐蚀性能的影响[J].稀有金属材料与工程,2013,42(12):2581-2585. YAO X H, ZHANG L,GAO W L. Effect of aging treatment on mechanical and intergranular corrosion properties of 7A85 high strength aluminum alloy[J]. Rare Metal Materials and Engineering,2013,42(12):2581-2585.
[11] XU D K, BIRBILIS N, ROMETSCH P A. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54:17-25.
[12] ROMETSCH P A, ZHANG Y, KNIGHT S. Heat treatment of 7xxx series aluminium alloys-some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2003-2017.
[13] CHEN S Y, CHEN K H, DONG P X, et al. Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2320-2325.
[14] 张江斌,李承波,何克准. 超厚7085铝合金板时效工艺优化[J]. 金属热处理,2018,43(1):179-183. ZHANG J B, LI C B, HE K Z. Optimization of aging process for ultra-thickness 7085 aluminum alloy plate[J]. Heat Treatment of Metals,2018,43(1):179-183.
[15] 赵凤,鲁法云,郭富安. 7050铝合金双级时效制度的研究[J]. 金属热处理,2015,40(11):149-153. ZHAO F, LU F Y,GUO F A. Two-step aging process of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2015,40(11):149-153.
[16] 陈送义,陈康华,董朋轩,等. 双级时效对7085铝合金组织和性能的影响[J].中国有色金属学报,2015,25(10):2688-2694. CHEN S Y,CHEN K H,DONG P X, et al. Effect of two-step aging on microstructure and properties of 7085 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2015,25(10):2688-2694.
[17] 蒋源,黄亮,何峰. 7050铝合金T74双级过时效的研究[J]. 热加工工艺,2014,43(12):187-190. JIANG Y, HUANG L,HE F. Study on T74 two-step aging for 7050 aluminum alloy[J].Hot Working Technology,2014,43(12):187-190.
[18] 柏璠,高文理,何正林. 时效工艺对7A85铝合金力学和晶间腐蚀性能的影响[J]. 中国有色金属学报,2016,26(5):957-963. BAI F,GAO W L,HE Z L. Effect of ageing processes on mechanical properties and intergranular corrosion of 7A85 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(5):957-963.
[19] 高莹,张显峰,王少华. 新型铝锌镁铜系高强韧铝合金型材的双级时效工艺[J].机械工程材料,2016,40(2):61-65. GAO Y, ZHANG X F,WANG S H. Two-step aging treatment for a new Al-Zn-Mg-Cu type of high strength-tough aluminum alloy profile[J]. Materials for Mechanical Engineering,2016,40(2):61-65.
[20] 陈洋,许晓静,陆文俊,等.固溶-大变形-时效下7085铝合金的晶间腐蚀和剥落腐蚀[J].稀有金属,2016,40(8):745-750. CHEN Y,XU X J,LU W J, et al. Intergranular corrosion and exfoliation corrosion of 7085 aluminum alloy under solution-large deformation-aging[J].Rare Metal,2016,40(8):745-750.
[21] 李承波,张新明,韩素琦,等. 时效对7085铝合金厚板淬火引起的不均匀性影响[J]. 中国有色金属学报,2016,26(9):1823-1831. LI C B,ZHANG X M,HAN S Q, et al. Effect of aging on quench-induced inhomogeneity of 7085 aluminum alloy thick plate[J]. The Chinese Journal of Nonferrous Metals,2016,26(9):1823-1831.
[22] LIU S D, LI C B,HAN S Q. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy[J]. Journal of Alloys and Compounds,2015,625:34-43.
[23] SUN W W, ZHU Y M, MARCEAU R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J]. Science,2019,363(6430):972-975.
[24] ZHANG Y, PELLICCIA D, BENJIAMIN M. Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering[J].Materials & Design,2018,142:259-267.
[25] MACCHI C E, SOMOZA A, DUPASQUIER A, et al. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J]. Acta Materialia, 2003, 51(17):5151-5158.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[6] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[7] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[8] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[9] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[12] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[13] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[14] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[15] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn