Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 100-105    DOI: 10.11868/j.issn.1001-4381.2018.001080
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高效光催化降解气相苯纳米TiO2微球的制备
杜晶晶1, 赵军伟2, 程晓民1, 施飞1
1. 宁波工程学院 机械工程学院, 浙江 宁波 315016;
2. 宁波工程学院 材料学院, 浙江 宁波 315016
Preparation of nano-TiO2 microspheres with high efficiency in photocatalytic degradation of gaseous benzene
DU Jing-jing1, ZHAO Jun-wei2, CHENG Xiao-min1, SHI Fei1
1. School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang, China;
2. School of Materials, Ningbo University of Technology, Ningbo 315016, Zhejiang, China
全文: PDF(2126 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以四氯化钛为钛源,尿素为沉淀剂前驱物,硫酸钠为分散剂,利用水热法在水-醇体系中制备出纳米TiO2微球。运用X射线衍射、电子显微镜、N2吸附-脱附和紫外-可见光谱等手段表征样品的结构和性质,并考察了水热温度对纳米TiO2微球结构及光催化降解气相苯活性的影响。结果表明,此类微球由纳米颗粒组成,且比表面积大,介孔结构明显,光吸收出现明显的"蓝移"。光催化结果显示,微球具有很高的光催化活性,尤其是180℃下制备的微球仅用20 min将苯完全去除,但生成CO2的量仍随时间有所增加,表明微球的强吸附性能促进其光催化降解过程,且矿化率高达5.5,是P25(2.7)的2倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜晶晶
赵军伟
程晓民
施飞
关键词 纳米TiO2微球比表面积光催化气相苯    
Abstract:The nano-TiO2 microspheres were prepared by a hydrothermal method with urea in ethanol/water solution in the presence of sodium sulfate. The prepared samples were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption and UV-Vis diffuse reflectance spectroscopy, the effects of hydrothermal temperature on the nano-TiO2microspheres morphology were investigated, and the photocatalytic activities toward gaseous benzene of the samples were studied. The results indicate that the microspheres are composed of tiny nanoparticles, the TiO2 microspheres pose high specific surface areas and uniform porous nanostructures, the optical absorption edges of the samples have "blue shift". The photocatalytic results confirm the benzene-degrading effectiveness of the TiO2 microspheres, especially, the results show that no benzene detected after 20 min reaction with TiO2 microspheres prepared at 180℃, however, the produced CO2 concentration continues to increase, it indicates that TiO2 microspheres with very high adsorptive capacity can enhance the subsequent photocatalytic reaction, and the mineralization ratio of this TiO2 microspheres can be as high as 5.5, which is double of P25 (2.7).
Key wordsnano-TiO2 microsphere    specific surface area    photocatalysis    gaseous benzene
收稿日期: 2018-09-11      出版日期: 2020-05-28
中图分类号:  O649  
通讯作者: 赵军伟(1980-),男,博士,研究方向为光电功能材料研究,联系地址:浙江省宁波市海曙区翠柏路89号宁波工程学院材料学院(315016),E-mail:nbninggong@163.com     E-mail: nbninggong@163.com
引用本文:   
杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
DU Jing-jing, ZHAO Jun-wei, CHENG Xiao-min, SHI Fei. Preparation of nano-TiO2 microspheres with high efficiency in photocatalytic degradation of gaseous benzene. Journal of Materials Engineering, 2020, 48(5): 100-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001080      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/100
[1] BAI G M, DAI H X, DENG J G, et al. Porous Co3O4 nanowires and nanorods:highly active catalysts for the combustion of toluene[J]. Applied Catalysis:A, 2013, 450:42-49.
[2] YANG Y, WANG G Z, DENG Q, et al. A facile synthesis of single crystal TiO2 nanorods with reactive {100} facets and their enhanced photocatalytic activity[J]. Cryst Eng Comm, 2014, 16:3091-3096.
[3] LUO C Z, REN X H, DAI Z G, et al. Present perspectives of advanced characterization techniques in TiO2-based photocatalysts[J]. ACS Applied Materials & Interfaces, 2017, 9:23265-23286.
[4] HAN C, HAN C, LUQUE R, et al. Facile preparation of controllable size monodisperse anatase titania nanoparticles[J]. Chemical Communications, 2012, 48:1860-1862.
[5] NGUYEN N H, BAI H. CATAL. Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2[J]. Today, 2015, 355:672-680.
[6] MILES D O, LEE C S, CAMERON P J, et al. Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells[J]. Journal of Power Sources, 2016, 325:365-374.
[7] LI J M, XU D S. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets[J]. Chemical Communications, 2009, 46:2301-2303.
[8] YANG W G, LI J M, WANG Y L, et al. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2011, 47:1809-1811.
[9] XING C, YAN Y Z, FENG C, et al. Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9:32896-32906.
[10] LI G L, LIU J Y, LAN J, et al. 3D hierarchical anatase TiO2 superstructures constructed by "nanobricks" built nanosheets with exposed {001} facets:facile synthesis, formation mechanism and superior photocatalytic activity[J]. Cryst Eng Comm, 2014, 16:10547-10552.
[11] LI Z T, REN Z Y, QU Y, et al. Hierarchical N-doped TiO2 microspheres with exposed (001) facets for enhanced visible light catalysis[J]. European Journal of Inorganic Chemistry, 2014, 12:2146-2152.
[12] TSAI M C, LEE J Y, CHEN P C. Effects of size and shell thickness of TiO2 hierarchical hollow spheres on photocatalytic behavior:an experimental and theoretical study[J]. Applied Catalysis:B, 2014, 147:499-507.
[13] JIANG Y J, LI M C, SONG D D, et al. A novel 3D structure composed of strings of hierarchical TiO2 spheres formed on TiO2 nanobelts with high photocatalytic properties[J]. Journal of Solid State Chemistry, 2014, 211:90-94.
[14] LIU B S, NAKATA K, SAKAI M, et al. Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area:facile preparation and high photocatalytic performance[J]. Catalysis Science & Technology, 2012, 2:1933-1939.
[15] HE F, MA F, LI J L, et al. Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2hollow nanoparticles[J]. Ceramics International, 2014, 40:6441-6446.
[16] YU J G, LIU W, YU H G, et al. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Crystal Growth & Design, 2008, 8:930-934.
[17] SUN Z Q, KIM J H, ZHAO Y, et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures[J]. Journal of the American Chemical Society, 2011, 133:19314-19317.
[18] YANG Y, WANG G Z, DENG Q, et al. Microwave assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(Ⅵ) and methyl orange[J]. ACS Applied Materials & Interfaces, 2014, 6:3008-3015.
[19] YANG Y, WANG G Z, GU G, et al. One pot microwave-assisted synthesis of Ag decorated yolk@shell structured TiO2 microspheres[J]. RSC Advances, 2015, 5:11349-11357.
[20] CHEN Q F, CHEN C C, JI H W, et al. Surfactant-additive-free synthesis of 3D anatase TiO2 hierarchical architectures with enhanced photocatalytic activity[J]. RSC Advances, 2013, 3:17559-17566.
[21] PAN J H, ZHANG X W, DU A J, et al. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications[J].Journal of the American Chemical Society, 2008, 130:11256-11257.
[22] LI H X, BIAN Z F, ZHU J, et al. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity[J]. Journal of the American Chemical Society, 2007, 129:8406-8407.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[3] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[4] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[5] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[6] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[7] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[8] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[9] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[10] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[11] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[12] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[13] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[14] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
[15] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn