Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (1): 61-69    DOI: 10.11868/j.issn.1001-4381.2018.001084
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响
涂蕴超1, 何承绪2, 孟利3,*(), 陈冷1,*()
1 北京科技大学 材料科学与工程学院, 北京 100083
2 全球能源互联网研究院有限公司, 北京 102211
3 钢铁研究总院冶金工艺研究所, 北京 100081
Effect of annealing process parameters and properties of base material on magnetic properties of ultra-thin grain-oriented silicon steel strip
Yun-chao TU1, Cheng-xu HE2, Li MENG3,*(), Leng CHEN1,*()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Global Energy Interconnection Research Institute Co., Ltd., Beijing 102211, China
3 Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(6332 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用EBSD技术对不同退火工艺处理后的冷轧取向硅钢超薄带样品进行研究,分析退火样品的显微组织、织构与磁性能的关系,讨论母材性能对超薄带性能的影响。结果表明:冷轧超薄带的退火组织均匀、Goss取向度高以及母材磁性能优良均可有效提升磁性能;退火升温速率主要影响晶粒尺寸、Goss取向度及磁性能;再结晶的平均晶粒尺寸改变,会影响最终超薄带的磁感应强度及铁损;在900℃退火5 min以上会明显发生再结晶,10~30 min内退火的超薄带磁性能变化较小,退火15 min获得最佳磁性能。此外,在1000℃及1100℃下退火的时间均不宜超过10 min,否则会恶化磁性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂蕴超
何承绪
孟利
陈冷
关键词 取向硅钢超薄带冷轧退火再结晶磁性能    
Abstract

The cold-rolled ultra-thin gain-oriented silicon steel strips with different annealing parameters were studied by EBSD technology. The relationship between microstructure, texture and magnetic properties of annealed samples was analyzed, and the effect of properties of the base material on the performance of the ultra-thin strip was discussed. The results show that the annealing microstructure uniformity, high Goss orientation and better magnetic properties of the base material can effectively improve magnetic properties of the ultra-thin strip, and the annealing heating rate mainly affects the grain size, Goss orientation and magnetic properties; the change of the average grain size of recrystallization structure influences the magnetic induction and iron loss of the final ultra-thin band. Recrystallization obviously occurs after annealing at 900℃ for 5 min, magnetic properties of ultra-thin strips change little after annealing for 10-30 min while the best magnetic properties can be obtained after annealing for 15 min. In addition, the annealing time should not exceed 10 min at 1000℃ and 1100℃, otherwise the magnetic properties will deteriorate.

Key wordsultra-thin grain-oriented silicon steel strip    cold rolling    annealing    recrystallization    mag-netic property
收稿日期: 2018-09-11      出版日期: 2020-01-09
中图分类号:  TG142.77  
基金资助:国家重点研发计划项目(2017YFB0903901);国家重点研发计划项目(2017YFB0903900)
通讯作者: 孟利,陈冷     E-mail: mengl@cisri.com.cn; li_meng@126.com;lchen@ustb.edu.cn
作者简介: 陈冷(1964—), 男, 教授, 博士生导师, 主要从事材料的晶体学织构理论与应用研究以及相变存储器材料开发, 联系地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院(100083), E-mail:lchen@ustb.edu.cn
孟利(1978—), 男, 高级工程师, 博士, 主要从事金属材料的各向异性及织构研究和新金属材料开发, 联系地址:北京市海淀区学院南路76号钢铁研究总院冶金工艺研究所(100081), E-mail:mengl@cisri.com.cn, li_meng@126.com
引用本文:   
涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
Yun-chao TU, Cheng-xu HE, Li MENG, Leng CHEN. Effect of annealing process parameters and properties of base material on magnetic properties of ultra-thin grain-oriented silicon steel strip. Journal of Materials Engineering, 2020, 48(1): 61-69.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001084      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/61
Sample C Mn S Al N Sn Cu Fe
A 0.0059 0.096 0.0003 < 0.005 0.0008 0.045 0.0047 Bal
B 0.0051 0.097 0.0002 < 0.005 0.0017 0.044 0.0055 Bal
C 0.0058 0.095 0.0002 < 0.005 0.0013 0.047 0.0049 Bal
D 0.0037 0.071 0.0002 < 0.005 0.0027 0.130 0.0740 Bal
Table 1  不同母材样品的化学成分(质量分数/%)
Fig.1  不同0.08 mm厚超薄带样品的磁性能
Fig.2  不同母材样品的磁性能
Fig.3  不同母材样品的宏观组织
(a)A; (b)B; (c)C; (d)D
Fig.4  不同母材样品中晶粒取向的{200}极图(1)和ODF ϕ2=45°(2)
(a)A; (b)B; (c)C; (d)D
Fig.5  样品B冷轧超薄带的EBSD分析
(a)EBSD取向成像图;(b){200}极图;(c)ODF ϕ2=45°
Fig.6  不同升温速率退火后超薄带样品的EBSD分析
(a)到温入炉;(b)450 ℃/h;(c)180 ℃/h;(d)90 ℃/h;(1)EBSD取向成像图;(2){200}极图
Fig.7  不同升温速率退火后超薄带样品的磁性能
Fig.8  不同升温速率退火后超薄带样品的晶粒尺寸
Fig.9  不同退火温度与退火时间处理后超薄带样品的磁性能
(a)900 ℃; (b)1000 ℃; (c)1100 ℃
Fig.10  900 ℃下不同退火时间处理后超薄带样品的EBSD分析
(a)10 min; (b)15 min; (c)20 min; (d)30 min; (1)EBSD取向成像图;(2){200}极图
Fig.11  1000 ℃下不同退火时间处理后超薄带样品的EBSD分析
(a)10 min; (b)15 min; (c)20 min; (d)30 min; (1)EBSD取向成像图;(2){200}极图
Fig.12  1100 ℃下不同退火时间处理后超薄带样品的EBSD分析
(a)10 min; (b)15 min; (c)20 min; (d)30 min; (1)EBSD取向成像图;(2){200}极图
1 何忠治. 电工钢的现状与展望[J]. 中国冶金, 2001, (4): 14- 16.
doi: 10.3969/j.issn.1006-9356.2001.04.004
1 HE Z Z . Present situation and prospect for electrical steel[J]. China Metallurgy, 2001, (4): 14- 16.
doi: 10.3969/j.issn.1006-9356.2001.04.004
2 XIA Z S , KANG Y L , WANG Q L . Developments in the production of grain-oriented electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (23): 3229- 3233.
doi: 10.1016/j.jmmm.2008.07.003
3 USHIGAMI Y , MIZOKAMI M , FUJIKURA M , et al. Recent development of low-loss grain-oriented silicon steel[J]. Journal of Materials Engineering and Performance, 1996, 5 (3): 310- 315.
doi: 10.1007/BF02649332
4 IUCHI T , YAMAGUCHI S , ICHIYAMA T , et al. Laser processing for reducing core loss of grain oriented silicon steel[J]. Journal of Applied Physics, 1982, 53 (3): 2410- 2412.
doi: 10.1063/1.330828
5 杨富尧, 古凌云, 何承绪, 等. 取向硅钢细化磁畴技术的研究现状及展望[J]. 材料导报, 2015, 29 (21): 36- 40.
5 YANG F Y , GU L Y , HE C X , et al. Research and prospect on the domain refinement of grain-oriented electrical steel[J]. Materials Review, 2015, 29 (21): 36- 40.
6 王爱华. 电工钢极薄带生产现状及市场应用[J]. 轧钢, 2011, 28 (4): 42- 45.
doi: 10.3969/j.issn.1003-9996.2011.04.012
6 WANG A H . Production status and market application of ultra-thin electrical steel strip[J]. Steel Rolling, 2011, 28 (4): 42- 45.
doi: 10.3969/j.issn.1003-9996.2011.04.012
7 CHAI K H , HEO N H , NA J G , et al. Tertiary recrystallization and magnetic induction under various annealing atmospheres in thin-gauged 3% Si-Fe strip[J]. Journal of Applied Physics, 2000, 87 (9): 5233- 5235.
doi: 10.1063/1.373305
8 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45 (6): 87- 96.
8 LIANG R Y , YANG P , MAO W M . Effects of cold rolling reduction and initial Goss grains orientation on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel[J]. Journal of Materials Engineering, 2017, 45 (6): 87- 96.
9 IMAMURA T , TERASHIMA T , HAYAKAWA Y . Newly developed grain-oriented electrical steel suitable for application to segmented core motors[J]. JFE Technical Report, 2005, 6, 8- 11.
10 JAHANGIRI M R , BAJGHOLI A , ZHAAM A A . Development of a new three-stage cold rolling manufacturing technology for grain-oriented silicon steel sheets[J]. International Journal of Advanced Manufacturing Technology, 2014, 75 (9/12): 1291- 1298.
11 KOMATSUBARA M , HAYAKAWA Y , TAKAMIYA T , et al. Newly developed grain-oriented Si-steel with thinner gauges[J]. Le Journal de Physique Ⅳ, 1998, 8 (PR2): 467- 474.
12 SAKAI T, HAMAMURA H. Method for production and apparatus for production of grain-oriented electrical steel sheet excellent in magnetic properties: US7883586[P].2011-02-08.
13 GAO X H , QI K M , QIU C L . Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling[J]. Materials Science and Engineering:A, 2006, 430, 138- 141.
doi: 10.1016/j.msea.2006.05.058
14 DUNN C G . Cold-rolled and primary recrystallization textures in cold-rolled single crystals of silicon iron[J]. Acta Metallurgica, 1954, 2 (2): 173- 183.
doi: 10.1016/0001-6160(54)90156-X
15 WANG Y , XU Y B , ZHANG Y X , et al. Development of microstructure and texture in strip casting grain oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2015, 379, 161- 166.
doi: 10.1016/j.jmmm.2014.12.043
16 BING F U , WANG H , YAN J , et al. Effects of temperature and alloying elements on γ phase fraction of grain-oriented silicon steel[J]. Journal of Iron and Steel Research, International, 2016, 23 (6): 573- 579.
doi: 10.1016/S1006-706X(16)30090-5
17 刘治赋, 刘宗滨, 李军, 等. Sn或Sb对高磁感取向硅钢组织和磁性的影响[J]. 金属学报, 1991, 27 (4): 38- 42.
17 LIU Z F , LIU Z B , LI J , et al. Effect of Sn or Sb on structure and magnetic properties of high induction oriented silicon steel[J]. Acta Metallurgica Sinica, 1991, 27 (4): 38- 42.
18 LITTMANN M F. Process for developing high magnetic permeability and low core loss in very thin silicon steel: US2473156[P]. 1949-06-14.
19 LOBANOV M L , RUSAKOV G M , REDIKUL'TSEV A A . Effect of copper content, initial structure, and scheme of treatment on magnetic properties of ultra-thin grain oriented electrical steel[J]. Physics of Metals and Metallography, 2013, 114 (7): 559- 565.
doi: 10.1134/S0031918X13070077
20 HÖLSCHER M , RAABE D , LÜCKE K . Rolling and recrystallization textures of bcc steels[J]. Steel Research International, 1991, 62 (12): 567- 575.
doi: 10.1002/srin.199100451
[1] 张瑞, 孟亦圆, 陈军, 车枫, 林莉, 罗忠兵. 工业纯铁退火过程中的位错密度和磁性能[J]. 材料工程, 2022, 50(6): 157-163.
[2] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[3] 刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
[4] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[5] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[6] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[7] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[8] 蒙德强, 王铁钢, 彭勇, 柯培玲, 朱强, 许人仁, 刘迁. 真空退火温度对AlCrSiN/Mo自润滑涂层结构与性能的影响[J]. 材料工程, 2021, 49(1): 126-132.
[9] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[10] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[11] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[12] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[13] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[14] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[15] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn