Effect of annealing process parameters and properties of base material on magnetic properties of ultra-thin grain-oriented silicon steel strip
Yun-chao TU1, Cheng-xu HE2, Li MENG3,*(), Leng CHEN1,*()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Global Energy Interconnection Research Institute Co., Ltd., Beijing 102211, China 3 Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing 100081, China
The cold-rolled ultra-thin gain-oriented silicon steel strips with different annealing parameters were studied by EBSD technology. The relationship between microstructure, texture and magnetic properties of annealed samples was analyzed, and the effect of properties of the base material on the performance of the ultra-thin strip was discussed. The results show that the annealing microstructure uniformity, high Goss orientation and better magnetic properties of the base material can effectively improve magnetic properties of the ultra-thin strip, and the annealing heating rate mainly affects the grain size, Goss orientation and magnetic properties; the change of the average grain size of recrystallization structure influences the magnetic induction and iron loss of the final ultra-thin band. Recrystallization obviously occurs after annealing at 900℃ for 5 min, magnetic properties of ultra-thin strips change little after annealing for 10-30 min while the best magnetic properties can be obtained after annealing for 15 min. In addition, the annealing time should not exceed 10 min at 1000℃ and 1100℃, otherwise the magnetic properties will deteriorate.
涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
Yun-chao TU, Cheng-xu HE, Li MENG, Leng CHEN. Effect of annealing process parameters and properties of base material on magnetic properties of ultra-thin grain-oriented silicon steel strip. Journal of Materials Engineering, 2020, 48(1): 61-69.
XIA Z S , KANG Y L , WANG Q L . Developments in the production of grain-oriented electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (23): 3229- 3233.
doi: 10.1016/j.jmmm.2008.07.003
3
USHIGAMI Y , MIZOKAMI M , FUJIKURA M , et al. Recent development of low-loss grain-oriented silicon steel[J]. Journal of Materials Engineering and Performance, 1996, 5 (3): 310- 315.
doi: 10.1007/BF02649332
4
IUCHI T , YAMAGUCHI S , ICHIYAMA T , et al. Laser processing for reducing core loss of grain oriented silicon steel[J]. Journal of Applied Physics, 1982, 53 (3): 2410- 2412.
doi: 10.1063/1.330828
YANG F Y , GU L Y , HE C X , et al. Research and prospect on the domain refinement of grain-oriented electrical steel[J]. Materials Review, 2015, 29 (21): 36- 40.
WANG A H . Production status and market application of ultra-thin electrical steel strip[J]. Steel Rolling, 2011, 28 (4): 42- 45.
doi: 10.3969/j.issn.1003-9996.2011.04.012
7
CHAI K H , HEO N H , NA J G , et al. Tertiary recrystallization and magnetic induction under various annealing atmospheres in thin-gauged 3% Si-Fe strip[J]. Journal of Applied Physics, 2000, 87 (9): 5233- 5235.
doi: 10.1063/1.373305
LIANG R Y , YANG P , MAO W M . Effects of cold rolling reduction and initial Goss grains orientation on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel[J]. Journal of Materials Engineering, 2017, 45 (6): 87- 96.
9
IMAMURA T , TERASHIMA T , HAYAKAWA Y . Newly developed grain-oriented electrical steel suitable for application to segmented core motors[J]. JFE Technical Report, 2005, 6, 8- 11.
10
JAHANGIRI M R , BAJGHOLI A , ZHAAM A A . Development of a new three-stage cold rolling manufacturing technology for grain-oriented silicon steel sheets[J]. International Journal of Advanced Manufacturing Technology, 2014, 75 (9/12): 1291- 1298.
11
KOMATSUBARA M , HAYAKAWA Y , TAKAMIYA T , et al. Newly developed grain-oriented Si-steel with thinner gauges[J]. Le Journal de Physique Ⅳ, 1998, 8 (PR2): 467- 474.
12
SAKAI T, HAMAMURA H. Method for production and apparatus for production of grain-oriented electrical steel sheet excellent in magnetic properties: US7883586[P].2011-02-08.
13
GAO X H , QI K M , QIU C L . Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling[J]. Materials Science and Engineering:A, 2006, 430, 138- 141.
doi: 10.1016/j.msea.2006.05.058
14
DUNN C G . Cold-rolled and primary recrystallization textures in cold-rolled single crystals of silicon iron[J]. Acta Metallurgica, 1954, 2 (2): 173- 183.
doi: 10.1016/0001-6160(54)90156-X
15
WANG Y , XU Y B , ZHANG Y X , et al. Development of microstructure and texture in strip casting grain oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2015, 379, 161- 166.
doi: 10.1016/j.jmmm.2014.12.043
16
BING F U , WANG H , YAN J , et al. Effects of temperature and alloying elements on γ phase fraction of grain-oriented silicon steel[J]. Journal of Iron and Steel Research, International, 2016, 23 (6): 573- 579.
doi: 10.1016/S1006-706X(16)30090-5
LIU Z F , LIU Z B , LI J , et al. Effect of Sn or Sb on structure and magnetic properties of high induction oriented silicon steel[J]. Acta Metallurgica Sinica, 1991, 27 (4): 38- 42.
18
LITTMANN M F. Process for developing high magnetic permeability and low core loss in very thin silicon steel: US2473156[P]. 1949-06-14.
19
LOBANOV M L , RUSAKOV G M , REDIKUL'TSEV A A . Effect of copper content, initial structure, and scheme of treatment on magnetic properties of ultra-thin grain oriented electrical steel[J]. Physics of Metals and Metallography, 2013, 114 (7): 559- 565.
doi: 10.1134/S0031918X13070077
20
HÖLSCHER M , RAABE D , LÜCKE K . Rolling and recrystallization textures of bcc steels[J]. Steel Research International, 1991, 62 (12): 567- 575.
doi: 10.1002/srin.199100451