Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (3): 121-126    DOI: 10.11868/j.issn.1001-4381.2018.001091
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
原位生长法制备花瓣状氢氧化钴及其电化学性能
冯艳艳, 李彦杰, 杨文(), 钟开应
桂林理工大学 化学与生物工程学院 广西电磁化学功能物质重点实验室, 广西 桂林 541004
In-situ synthesis and electrochemical properties of flower-like cobalt hydroxide
Yan-yan FENG, Yan-jie LI, Wen YANG(), Kai-ying ZHONG
Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(2817 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以硝酸钴为钴源,六次甲基四胺为沉淀剂,通过水热法在棉花基碳纤维基底上原位生长氢氧化钴。借助扫描电镜、X射线衍射和红外光谱等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。X射线衍射和扫描电镜测试结果表明,在碳纤维基底上原位生长的氢氧化钴呈花瓣状、α型。电化学性能测试表明,当电流密度为1 A/g时,所得花瓣状氢氧化钴的比电容为650 F/g;当电流密度增大至10 A/g时,仍保留67%的初始比电容值。以上结果表明,在碳纤维基底上原位生长形成的花瓣状氢氧化钴具有优异的电化学性能,原因在于碳纤维基底原位生长有助于提高氢氧化钴的分散性,形成纳米片状花瓣结构,进而显著改善其储能性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯艳艳
李彦杰
杨文
钟开应
关键词 超级电容器花瓣状氢氧化钴碳纤维六次甲基四胺    
Abstract

The cobalt hydroxides were in situ synthesized via hydrothermal method with carbon fiber derived from cotton as substrate using cobalt nitrate as cobalt precursor and hexamethylenetetramine as precipitation agent. The morphology and structure of the materials were characterized by scanning electron microscope(SEM), X-ray diffraction(XRD) and IR spectra, respectively. The electroch-emical performance of the samples was analyzed by electrochemical tests such as cyclic voltammetry, galvanostatic charge and discharge and AC impedance. The XRD and SEM results show that, the obtained cobalt hydroxide grown in situ on the carbon fiber substrate is flower-like and α-phase. The electrochemical performance tests display that the specific capacitance of the flower-like cobalt hydroxide is 650 F/g at the current density of 1 A/g, and the retention rate of 67% can be kept with the current density of 10 A/g. The above results illustrate that the flower-like cobalt hydroxide has excellent electrochemical performance, mainly due to its unique structure and morphology, which significantly improves the stability of the electrode material, the diffusion rate of ions and the transport efficiency of electrons.

Key wordssupercapacitor    flower-like cobalt hydroxide    carbon fiber    hexamethylenetetramine
收稿日期: 2018-09-15      出版日期: 2020-03-18
中图分类号:  O646  
基金资助:广西自然科学基金(2017GXNSFBA198193);广西自然科学基金(2017GXNSFBA198124);国家自然科学基金(21606058);广西中青年教师基础能力提升项目(2017KY0268)
通讯作者: 杨文     E-mail: yangwen167@163.com
作者简介: 杨文(1984-), 男, 讲师, 研究方向为能源催化材料, 联系地址:广西壮族自治区桂林市雁山区雁山街319号桂林理工大学化学与生物工程学院(541004), E-mail:yangwen167@163.com
引用本文:   
冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
Yan-yan FENG, Yan-jie LI, Wen YANG, Kai-ying ZHONG. In-situ synthesis and electrochemical properties of flower-like cobalt hydroxide. Journal of Materials Engineering, 2020, 48(3): 121-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001091      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/121
Fig.1  样品的扫描电镜图  (a)CoH;(b~d)CoH-CF
Fig.2  样品的X射线衍射谱图
Fig.3  样品的红外光谱图
Fig.4  样品在不同扫描速率下的循环伏安曲线  (a)CoH; (b)CoH-CF
Fig.5  样品在不同电流密度下的恒电流充放电曲线  (a)CoH; (b)CoH-CF
Fig.6  样品在不同电流密度下的比电容(a)和比电容剩余率(b)
Fig.7  样品的Nyquist曲线(a)和高频区Nyquist曲线的放大图(b)
Fig.8  样品CoH-CF在电流密度为15 A/g时的循环稳定性曲线
1 NOH J , YOON C M , YUN K K , et al. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2, and carbon fiber/MoO3[J]. Carbon, 2017, 116, 470- 478.
doi: 10.1016/j.carbon.2017.02.033
2 LIU M , SHI M , LU W , et al. Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes[J]. Chemical Engineering Journal, 2017, 313, 518- 526.
doi: 10.1016/j.cej.2016.12.091
3 FENG Y Y , HUANG H B , YANG W , et al. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes[J]. Integrated Ferroelectrics, 2018, 188 (1): 44- 56.
doi: 10.1080/10584587.2018.1454763
4 XIAO P W , MENG Q , ZHAO L , et al. Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption[J]. Materials & Design, 2017, 129, 164- 172.
5 SHI P , LI L , HUA L , et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor[J]. ACS Nano, 2017, 11 (1): 444- 452.
doi: 10.1021/acsnano.6b06357
6 YANG W , FENG Y Y , XIAO D , et al. Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials[J]. International Journal of Energy Research, 2015, 39 (6): 805- 811.
doi: 10.1002/er.3301
7 THEERTHAGIRI J , THIAGARAJAN K , SENTHILKUMAR B , et al. Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications[J]. Chemistryselect, 2017, 2 (1): 201- 210.
8 BAO L , LI T , CHEN S , et al. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13 (5): 1602077.
doi: 10.1002/smll.201602077
9 冯艳艳, 黄宏斌, 张心桔, 等. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究[J]. 物理学报, 2017, 66 (24): 245- 253.
doi: 10.7498/aps.66.248202
9 FENG Y Y , HUANG H B , ZHANG X J , et al. Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance[J]. Acta Physica Sinica, 2017, 66 (24): 248202.
doi: 10.7498/aps.66.248202
10 XU J , MA C , CAO J , et al. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors[J]. Dalton Transactions, 2017, 46, 3276- 3283.
doi: 10.1039/C6DT04759A
11 YANG W , FENG Y Y , WANG N , et al. Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application:effect of the cobalt precursors[J]. Journal of Alloys and Compounds, 2015, 644, 836- 845.
doi: 10.1016/j.jallcom.2015.05.055
12 杜双双, 何颖, 徐晨辉, 等. 碳布负载的MnO2-PANI复合材料的控制合成及其不对称超级电容器[J]. 功能高分子学报, 2015, 28 (4): 353- 359.
12 DU S S , HE Y , XU C H , et al. Controllable synthesis of MnO2-PANI composite on carbon cloth and its asymmetric supercapacitor[J]. Journal of Functional Polymers, 2015, 28 (4): 353- 359.
13 吴红英, 王欢文. 钴酸镍纳米花/活性炭纤维复合物的制备和表征及其超级电容器性能[J]. 物理化学学报, 2013, 29 (7): 1501- 1506.
doi: 10.3866/PKU.WHXB201304241
13 WU H Y , WANG H W . Synthesis and characterization of NiCo2O4 nanoflower/activated carbon fiber composite and its supercapacitor properties[J]. Acta Physico-Chimica Sinica, 2013, 29 (7): 1501- 1506.
doi: 10.3866/PKU.WHXB201304241
14 傅晓燕, 梅军, 刘昊, 等. 碳气凝胶/四氧化三钴复合材料的制备及电化学性能[J]. 功能材料, 2015, 46 (6): 6115- 6119.
doi: 10.3969/j.issn.1001-9731.2015.06.024
14 FU X Y , MEI J , LIU H , et al. Preparation and electrochemical performance of carbon aerogel/cobaltosic oxide composites[J]. Journal of Functional Materials, 2015, 46 (6): 6115- 6119.
doi: 10.3969/j.issn.1001-9731.2015.06.024
15 张伟丰.过渡金属氧化物/石墨烯复合材料的制备及其超级电容性能研究[D].杭州: 浙江大学, 2013.
15 ZHANG W F. Synthesis of composite of transition metal oxide and graphene and their supercapacitor properties[D]. Hangzhou: Zhejiang University, 2013.
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[4] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[5] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[6] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[7] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[8] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[9] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[10] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[11] 刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
[12] 顾善群, 张代军, 付善龙, 刘燕峰, 李军, 邹齐, 陈祥宝. 碳纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(11): 73-82.
[13] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[14] 黄成杰, 杨敏, 李红, 任慕苏, 孙晋良. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111.
[15] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn