Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 121-126    DOI: 10.11868/j.issn.1001-4381.2018.001091
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
原位生长法制备花瓣状氢氧化钴及其电化学性能
冯艳艳, 李彦杰, 杨文, 钟开应
桂林理工大学 化学与生物工程学院 广西电磁化学功能物质重点实验室, 广西 桂林 541004
In-situ synthesis and electrochemical properties of flower-like cobalt hydroxide
FENG Yan-yan, LI Yan-jie, YANG Wen, ZHONG Kai-ying
Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(2817 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以硝酸钴为钴源,六次甲基四胺为沉淀剂,通过水热法在棉花基碳纤维基底上原位生长氢氧化钴。借助扫描电镜、X射线衍射和红外光谱等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。X射线衍射和扫描电镜测试结果表明,在碳纤维基底上原位生长的氢氧化钴呈花瓣状、α型。电化学性能测试表明,当电流密度为1 A/g时,所得花瓣状氢氧化钴的比电容为650 F/g;当电流密度增大至10 A/g时,仍保留67%的初始比电容值。以上结果表明,在碳纤维基底上原位生长形成的花瓣状氢氧化钴具有优异的电化学性能,原因在于碳纤维基底原位生长有助于提高氢氧化钴的分散性,形成纳米片状花瓣结构,进而显著改善其储能性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯艳艳
李彦杰
杨文
钟开应
关键词 超级电容器花瓣状氢氧化钴碳纤维六次甲基四胺    
Abstract:The cobalt hydroxides were in situ synthesized via hydrothermal method with carbon fiber derived from cotton as substrate using cobalt nitrate as cobalt precursor and hexamethylenetetramine as precipitation agent. The morphology and structure of the materials were characterized by scanning electron microscope(SEM), X-ray diffraction(XRD) and IR spectra, respectively. The electroch-emical performance of the samples was analyzed by electrochemical tests such as cyclic voltammetry, galvanostatic charge and discharge and AC impedance. The XRD and SEM results show that, the obtained cobalt hydroxide grown in situ on the carbon fiber substrate is flower-like and α-phase. The electrochemical performance tests display that the specific capacitance of the flower-like cobalt hydroxide is 650 F/g at the current density of 1 A/g, and the retention rate of 67% can be kept with the current density of 10 A/g. The above results illustrate that the flower-like cobalt hydroxide has excellent electrochemical performance, mainly due to its unique structure and morphology, which significantly improves the stability of the electrode material, the diffusion rate of ions and the transport efficiency of electrons.
Key wordssupercapacitor    flower-like cobalt hydroxide    carbon fiber    hexamethylenetetramine
收稿日期: 2018-09-15      出版日期: 2020-03-18
中图分类号:  O646  
通讯作者: 杨文(1984-),男,讲师,研究方向为能源催化材料,联系地址:广西壮族自治区桂林市雁山区雁山街319号桂林理工大学化学与生物工程学院(541004),E-mail:yangwen167@163.com     E-mail: yangwen167@163.com
引用本文:   
冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
FENG Yan-yan, LI Yan-jie, YANG Wen, ZHONG Kai-ying. In-situ synthesis and electrochemical properties of flower-like cobalt hydroxide. Journal of Materials Engineering, 2020, 48(3): 121-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001091      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/121
[1] NOH J, YOON C M, YUN K K, et al. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2, and carbon fiber/MoO3[J]. Carbon, 2017, 116:470-478.
[2] LIU M, SHI M, LU W, et al. Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes[J]. Chemical Engineering Journal, 2017, 313:518-526.
[3] FENG Y Y, HUANG H B, YANG W, et al. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes[J]. Integrated Ferroelectrics, 2018, 188(1):44-56.
[4] XIAO P W, MENG Q, ZHAO L, et al. Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption[J]. Materials & Design, 2017, 129:164-172.
[5] SHI P, LI L, HUA L, et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor[J]. ACS Nano, 2017, 11(1):444-452.
[6] YANG W, FENG Y Y, XIAO D, et al. Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials[J]. International Journal of Energy Research, 2015, 39(6):805-811.
[7] THEERTHAGIRI J, THIAGARAJAN K, SENTHILKUMAR B, et al. Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications[J]. Chemistryselect, 2017, 2(1):201-210.
[8] BAO L, LI T, CHEN S, et al. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13(5):1602077.
[9] 冯艳艳,黄宏斌,张心桔,等. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究[J]. 物理学报, 2017, 66(24):245-253. FENG Y Y, HUANG H B, ZHANG X J, et al. Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance[J]. Acta Physica Sinica, 2017, 66(24):248202.
[10] XU J, MA C, CAO J, et al. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors[J]. Dalton Transactions, 2017, 46:3276-3283.
[11] YANG W, FENG Y Y, WANG N, et al. Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application:effect of the cobalt precursors[J]. Journal of Alloys and Compounds, 2015, 644:836-845.
[12] 杜双双,何颖,徐晨辉,等. 碳布负载的MnO2-PANI复合材料的控制合成及其不对称超级电容器[J]. 功能高分子学报, 2015, 28(4):353-359. DU S S, HE Y, XU C H, et al. Controllable synthesis of MnO2-PANI composite on carbon cloth and its asymmetric supercapacitor[J]. Journal of Functional Polymers, 2015, 28(4):353-359.
[13] 吴红英,王欢文. 钴酸镍纳米花/活性炭纤维复合物的制备和表征及其超级电容器性能[J]. 物理化学学报, 2013, 29(7):1501-1506. WU H Y, WANG H W. Synthesis and characterization of NiCo2O4 nanoflower/activated carbon fiber composite and its supercapacitor properties[J]. Acta Physico-Chimica Sinica, 2013, 29(7):1501-1506.
[14] 傅晓燕,梅军,刘昊,等. 碳气凝胶/四氧化三钴复合材料的制备及电化学性能[J]. 功能材料, 2015, 46(6):6115-6119. FU X Y, MEI J, LIU H, et al. Preparation and electrochemical performance of carbon aerogel/cobaltosic oxide composites[J]. Journal of Functional Materials, 2015, 46(6):6115-6119.
[15] 张伟丰. 过渡金属氧化物/石墨烯复合材料的制备及其超级电容性能研究[D]. 杭州:浙江大学, 2013. ZHANG W F. Synthesis of composite of transition metal oxide and graphene and their supercapacitor properties[D]. Hangzhou:Zhejiang University, 2013.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[3] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[4] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[5] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[6] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[7] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[8] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[9] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[10] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[11] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[12] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[13] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[14] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[15] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn