Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 134-141    DOI: 10.11868/j.issn.1001-4381.2018.001112
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
挤出方式对黏弹性浆料3D打印出料可控性的影响
郑镭1,2, 孙维连1, 孙铂1, 张雪静2, 纪宏超2,3
1. 河北农业大学 机电工程学院, 河北 保定 071001;
2. 华北理工大学 机械工程学院, 河北 唐山 063210;
3. 北京科技大学 国家材料服役安全科学中心, 北京 100083
Influence of extrusion methods on discharging controllability of 3D printing with viscoelastic slurry
ZHENG Lei1,2, SUN Wei-lian1, SUN Bo1, ZHANG Xue-jing2, JI Hong-chao2,3
1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, Hebei, China;
2. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China;
3. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3068 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于挤出工艺的陶瓷3D打印技术应用过程中,不同挤出方式对出料速率可控性存在重要影响,从而导致打印样件在表面质量及打印成功率方面存在明显差异。针对这一问题,研究选择柱塞和螺杆两种挤出方式,在Bingham黏弹性流体浆料及0.6 mm喷嘴直径的基本条件下,结合现场实验数据和模拟仿真得出的出料速率变化曲线,对柱塞与螺杆两种挤出方式的3D打印效果进行对比分析。结果表明:螺杆挤出方式在0.03 s内,出料速率已降至原始出料速率的30%以下,而柱塞挤出方式达到该出料速率所需的时间为2.4 s,在停止供料的0.27 s内柱塞挤出方式的出料量是螺杆挤出方式出料量的3倍。通过流场分析发现黏弹性浆料条件下两种挤出装置的驱动原理不同是造成该差异的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑镭
孙维连
孙铂
张雪静
纪宏超
关键词 陶瓷3D打印黏弹性浆料挤出装置出料速率    
Abstract:In the application of ceramic 3D printing technology based on extrusion process, it was found that different extrusion methods have important influence on the controllability of the discharging speed, which leads to obvious difference in the surface quality and the success rate of printing samples. For this problem, two kinds of extruding devices with plunger and screw were selected. Under the basic conditions of Bingham viscoelastic fluid slurry and 0.6 mm nozzle diameter, the 3D printing effect of the two kinds of equipment was compared and analyzed by combining the printing test data and the simulation discharge velocity curve. The results show that the discharging speed of screw extrusion method decreases below 30% than that of the original in 0.03 s, the time required to reach this discharge speed by the plunger extrusion method is 2.4 s. The discharge amount of the plunger extrusion method is 3 times that of the screw extruder method in 0.27 s after the slurry feed is stopped. The flow field analysis shows that the different driving principle of the two extrusion methods under viscoelastic slurry condition is the main reason for this difference.
Key wordsceramic 3D printing    viscoelastic slurry    extrusion device    discharging speed
收稿日期: 2018-09-19      出版日期: 2020-03-18
中图分类号:  TB332  
  TH164  
通讯作者: 孙维连(1956-),男,教授,博士,主要从事装备制造、金属组织强化等,联系地址:河北省保定市灵雨寺街289号河北农业大学机电工程学院(071001),E-mail:bd999@eyou.com     E-mail: bd999@eyou.com;jihongchao@ncst.edu.cn
引用本文:   
郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
ZHENG Lei, SUN Wei-lian, SUN Bo, ZHANG Xue-jing, JI Hong-chao. Influence of extrusion methods on discharging controllability of 3D printing with viscoelastic slurry. Journal of Materials Engineering, 2020, 48(3): 134-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001112      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/134
[1] 张海鸥,应炜晟,符友恒,等.陶瓷零件增量成形技术的研究进展[J].中国机械工程,2015,26(9):1271-1277. ZHANG H O,YING W S,FU Y H,et al.Advances in additive shaping of ceramic parts[J].China Mechanical Engineering,2015,26(9):1271-1277.
[2] 夏驰,曹良成,冯联华,等.机械臂3D打印技术及系统的试验研究[J].机械设计与制造,2018(2):107-109. XIA C,CAO L C,FENG L H,et al.Experimental study of 3D printing technology and systems based on robotic manipulator[J].Machinery Design & Manufacture,2018(2):107-109.
[3] LEWIS J A.Direct-write assembly of ceramics from colloidal inks[J].Current Opinion in Solid State and Materials Science,2002,6(3):245-250.
[4] LEWIS J A.Colloidal processing of ceramics[J].Journal of the American Ceramic Society,2000,83(10):2341-2359.
[5] GUO J Y,LEWIS J A.Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions[J].Journal of the American Ceramic Society,1999,82(9):2345-2358.
[6] HUANG T,MASON M S,ZHAO X Y,et al.Aqueous-based freeze-form extrusion fabrication of alumina components[J].Rapid Prototyping Journal,2009,15(2):88-95.
[7] XU N,YE X J,WEI D X,et al.3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair[J].ACS Applied Materials & Interfaces,2014,6(17):14952-14963.
[8] ZHANG X Y,GUO Z M,CHEN C G,et al.Additive manufacturing of WC-20Co components by 3D gel-printing[J].International Journal of Refractory Metals & Hard Materials,2017,70:215-223.
[9] 刘骥远,吴懋亮,蔡杰,等.工艺参数对3D打印陶瓷零件质量的影响[J].上海电力学院学报,2015,31(4):376-380. LIU J Y,WU M L,CAI J,et al.Influence of operating parameters on 3D printing ceramic parts[J].Journal of Shanghai University of Electric Power,2015,31(4):376-380.
[10] SHAO H P,ZHAO D C,LIN T,et al.3D gel-printing of zirconia ceramic parts[J].Ceramics International,2017,43(16):13938-13942.
[11] 沈响.3D打印技术在航空制造中的应用研究[D].西安:长安大学,2017. SHEN X.Research on application of 3D printing technology in aeronautical manufacture[D].Xi'an:Chang'an University,2017.
[12] HUANG T S,MASON M S,HILMAS G E,et al.Freeze-form extrusion fabrication of ceramic parts[J].International Journal of Virtual and Physical Prototyping,2006,1(2):93-100.
[13] 马青松,陈朝辉,郑文伟,等.先驱体转化法制备连续纤维增强陶瓷基复合材料的研究[J].材料科学与工程,2001,19(4):110-115. MA Q S,CHEN Z H,ZHENG W W,et al.Research and development of continuous-fiber-reinforced ceramic matrix composites fabricated by precursor-infiltration-pyrolysis[J].Materials Science and Engineering,2002,19(4):110-115.
[14] 马青松,陈朝辉,郑文伟,等.热压辅助先驱体裂解制备的三维Cf/Si-O-C复合材料的微观结构与力学性能[J].航空材料学报,2004,24(5):26-30. MA Q S,CHEN Z H,ZHENG W W,et al.Microstructures and mechanical properties of carbon fiber reinforced silicon oxycarbide composites fabricated via hot-pressing assisted pyrolysis of polysiloxane[J].Journal of Aeronautical Materials,2004,24(5):26-30.
[15] VAJRAVELU K,SREENADH S,DEVAKI P,et al.Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube[J].Central European Journal of Physics,2011,9(5):1357-1366.
[16] 郑智颖.FLUENT在粘弹性流体流动数值模拟中的应用[D].哈尔滨:哈尔滨工业大学,2013. ZHENG Z Y.Application of FLUENT software in numerical simulation for viscoelastic fluent flow[D].Harbin:Harbin Institute of Technology,2013.
[17] DAI Y J,DENG T.Stabilization and characterization of colloidal gas aphron dispersions[J].Journal of Colloid and Interface Science,2003,261(2):360-365.
[18] 陈荣,邓智泉,严仰光.永磁同步电机伺服系统中电机启动过程分析[J].西南交通大学学报,2004,39(2):203-208. CHEN R,DENG Z Q,YAN Y G.Analysis of starting process of PMSM servo system[J].Journal of Southwest Jiaotong University,2004,39(2):203-208.
[19] TSUJI T,MIZUOCHI M,NISHI H,et al.A velocity measurement method for acceleration control[C]//31st Industrial Electronics Society Annual Conference of IEEE.North Carolina:IEEE,2005:1943-1948.
[20] TUNKASIRI T, TAWICHAI N, RAENGTHON N,et al.Preparation of lanthanum-doped Pb(Zr,Ti)O3 ceramics sheets by tape casting[J].Journal of Materials Science and Engineering,2007,25(6):899-901.
[21] 王占礼,高山山,陈延伟,等.一种基于FDM-3D打印机改进喷嘴的流-固耦合模拟分析[J].制造业自动化,2018,40(3):47-52. WANG Z L,GAO S S,CHEN Y W,et al.An improved nozzle based on FDM-3D printer simulation analysis of fluid-solid coupling[J].Manufacturing Automation,2018,40(3):47-52.
[1] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[2] 姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
[3] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[4] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[5] 徐学宏, 郑义珠, 陈吉平, 宁博. 缝合密度对缝合/VARI成型复合材料力学性能的影响[J]. 材料工程, 2020, 48(10): 68-73.
[6] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[7] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[8] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[9] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[10] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[11] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[12] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[13] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[14] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[15] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn