Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 56-61    DOI: 10.11868/j.issn.1001-4381.2018.001129
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二硫化钼/石墨烯复合材料的一步水热合成及电催化性能
张传香1, 陈亚玲2, 巩云1, 刘慧颖1, 戴玉明1, 丛园1
1. 南京工程学院 材料科学与工程学院, 南京 211167;
2. 南京航空航天大学 材料科学与技术学院, 南京 210016
One-step hydrothermal synthesis and electrocatalytic performance of MoS2/RGO composites
ZHANG Chuan-xiang1, CHEN Ya-ling2, GONG Yun1, LIU Hui-ying1, DAI Yu-ming1, CONG Yuan1
1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(2406 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为提高催化剂的催化活性及稳定性,采用一步水热法合成二硫化钼/石墨烯(MoS2/RGO)复合催化剂。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜及旋转圆盘电极等分别对催化剂的物理-化学性能进行表征。结果表明:与石墨烯复合后,MoS2呈少层花瓣状结构,层间距增加且均匀附着在石墨烯薄层上;二硫化钼催化剂的氧还原过程主要以二电子途径进行,而MoS2/RGO复合催化剂在氧还原过程中可发挥协同催化作用,其氧还原过程中平均转移电子数为3.58,且复合催化剂在20000 s后的电流密度保持率高达89.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张传香
陈亚玲
巩云
刘慧颖
戴玉明
丛园
关键词 水热法二硫化钼/石墨烯氧还原催化稳定性    
Abstract:Molybdenum disulfide/reduced graphene(MoS2/RGO) composite catalyst was synthesized by one-step hydrothermal method in order to improve the catalytic activity and stability. X-ray diffractometer, scanning electron microscope, transmission electron microscope and rotating disk electrode were used to characterize the physical and chemical properties of the catalyst. The results show that the molybdenum disulfide compound with graphene has pear-shaped structure with few layers, and the layer spacing increases which is uniformly attached to the thin layer of graphene. The oxygen reduction process of molybdenum disulfide catalyst is mainly carried out in two-electron path, while MoS2/RGO composite catalyst can play a synergistic catalytic role in oxygen reduction process and the average number of electron transfer in the process is 3.58. The current density retention rate of the composite catalyst after 20000 s is up to 89.7%.
Key wordshydrothermal method    MoS2/RGO    oxygen reduction    catalytic stability
收稿日期: 2018-09-25      出版日期: 2020-05-28
中图分类号:  O643  
通讯作者: 张传香(1980-),女,副教授,博士,主要从事燃料电池催化剂材料的研究,联系地址:江苏省南京市江宁科学园弘景大道1号南京工程学院材料科学与工程学院5-327室(211167),E-mail:zhangcxnuaa@njit.edu.cn     E-mail: zhangcxnuaa@njit.edu.cn
引用本文:   
张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
ZHANG Chuan-xiang, CHEN Ya-ling, GONG Yun, LIU Hui-ying, DAI Yu-ming, CONG Yuan. One-step hydrothermal synthesis and electrocatalytic performance of MoS2/RGO composites. Journal of Materials Engineering, 2020, 48(5): 56-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001129      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/56
[1] ALONSO-VANTE N,TRIBUTSCH H. Energy conversion catalysis using semiconducting transition metal cluster compounds[J]. Nature,1986,323(6087):431-432.
[2] SUN T,WU Q,CHE R,et al. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium[J]. ACS Catalysis,2015,5(3):1857-1862.
[3] 史艳华,赵杉林,王玲,等. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程,2017,45(9):72-80. SHI Y H,ZHAO S L,WANG L,et al. Nanocrystalline Mn-Mo-Ce oxide anode doped rare earth Ce and its selective electro-catalytic performance[J]. Journal of Materials Engineering,2017,45(9):72-80.
[4] ZIEGELBAUER J M,OLSON T S,PYLYPENKO S,et al. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications[J]. Journal of Physical Chemistry C,2008,112(24):8839-8849.
[5] FERNANDEZ J L, RAGHUVEER V, MANTHIRAM A, et al. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of the American Chemical Society,2005,127(38):13100-13101.
[6] GUO S J,LI D G,ZHU H Y,et al. Fe/Pt and Co/Pt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Ange-wandte Chemie,2013,52(12):3465-3468.
[7] RAMASWAMY N,ALLEN R J,MUKERJEE S. Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media[J]. Journal of Physical Chemistry C,2011,115(25):12650-12664.
[8] WANG T Y,GAO D L,ZHUO J Q,et al. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles[J]. Chemistry-A Euro-pean Journal,2013,19(36):11939-11948.
[9] WANG T Y,ZHUO J Q,CHEN Y,et al. Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction[J]. Chemcat-chem,2014,6(7):1877-1881.
[10] ENG A Y S,AMBROSI A,SOFER Z,et al. Electrochemistry of transition metal dichalcogenides:strong dependence on the metal-to-chalcogen composition and exfoliation method[J]. ACS Nano,2014,8(12):12185-12198.
[11] XIE J F,ZHANG J J,LI S,et al. Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society,2013,135(47):17881-17888.
[12] SHAO J,QU Q T,WAN Z M,et al. From dispersed micro-spheres to interconnected nanospheres:carbon-sandwiched monolayered MoS2 as high-performance anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(41):22927-22934.
[13] XIONG F Y,CAI Z Y,QU L B,et al. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers:a stable anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(23):12625-12630.
[14] LI H L,YU K,FU H,et al. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries[J]. Journal of Physical Chemistry C,2015,119(14):7959-7968.
[15] 王铁钢,李柏松,阎兵,等. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程,2017,45(3):73-79. WANG T G,LI B S,YAN B,et al. Tribological behavior of multi-layered WC-Co/MoS2-Ni self-lubricating coating fabricated by detonation gun spraying[J]. Journal of Materials Engi-neering,2017,45(3):73-79.
[16] LEVITA G,CAVALEIRO A,MOLINARI E,et al. Sliding properties of MoS2 layers:load and interlayer orientation effects[J]. Journal of Physical Chemistry C, 2014,118(25):13809-13816.
[17] MA X Y,WANG Q,GU W X. Enhancement of photoelectric efficiency via optimization of absorption and excitation of surface plasmons in ZnO/CdS/MoS2/Ag multilayer films[J]. Journal of Nanoelectronics and Optoelectronics,2015,10(2):191-194.
[18] ZHAO M,CHANG M J,WANG Q,et al. Unexpected optical limiting properties from MoS2nanosheets modified by a semiconductive polymer[J]. Chemical Communication,2015,51(61):12262-12265.
[19] 王莹,李勇,朱靖,等. 氧化石墨烯表面稀土改性机理[J]. 材料工程,2018,46(5):29-35. WANG Y,LI Y,ZHU J,et al. Surface modification mechanism of graphene oxide by adding rare earths[J]. Journal of Materials Engineering,2018,46(5):29-35.
[20] 曾斌,陈小华,汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程,2017,45(12):99-105. ZENG B,CHEN X H,WANG C R. Synthesis and photocatalytic properties of reduced graphene oxides loaded-nano ZnS/CuS heterostructures[J]. Journal of Materials Engineering,2017,45(12):99-105.
[21] CHANG K,CHEN W X. Single-layer MoS2/graphene dispersed in amorphous carbon:towards high electrochemical perfor-mances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(43):17175-17184.
[22] CHANG K,CHEN W X,MA L,et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(17):6251-6257.
[23] 陈亚玲,宋力,郭虎,等. 水热合成二硫化钨/石墨烯复合材料及其氧还原性能[J]. 无机化学学报,2016,32(4):633-640. CHEN Y L,SONG L,GUO H,et al. Hydrothermal synthesis and ORR performance of tungsten disulfide/reduced graphene oxide composite[J]. Chinese Journal of Inorganic Chemistry,2016,32(4):633-640.
[1] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[2] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[3] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[4] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[5] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[6] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[7] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[8] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[9] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[10] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[11] 刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
[12] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[13] 戚瑞琼, 李伟杰, 连虹, 史新伟, 姚宁. Zr2P2WO12/Fe-Ni复合材料的制备及其热膨胀性能研究[J]. 材料工程, 2016, 44(12): 61-66.
[14] 夏傲, 于婉茹, 谈国强. 葡萄糖对微波水热合成正极材料LiFePO4的结构和性能的影响[J]. 材料工程, 2016, 44(10): 68-73.
[15] 马烽, 陆丰艳, 秦岩, 王睿. N,O-羧甲基壳聚糖磁性复合微球的制备与表征[J]. 材料工程, 2014, 0(8): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn