Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 75-83    DOI: 10.11868/j.issn.1001-4381.2018.001131
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能
叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇
南昌大学 机电工程学院, 南昌 330031
Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting
YE Han, HUANG Jun-qiang, ZHANG Jian-qiang, LI Cong-cong, LIU Yong
School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(5393 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了进一步增强选区激光熔化(SLM)成型AlSi10Mg合金的性能,采用物理混合方法混合纳米WC与AlSi10Mg得到WC质量分数为0.1%的WC/AlSi10Mg复合材料,利用选区激光熔化成型机制备试样块。通过对比同种工艺制备的AlSi10Mg试样,探究纳米WC对其微观组织形成、演变规律及其组织对力学性能的影响。结果显示,WC/AlSi10Mg粉末球形度好,粒度分布集中在20~60 μm。WC/AlSi10Mg试样致密度达到99%以上,硬度约为158.89HV,相比AlSi10Mg试样增加了14.58%。WC/AlSi10Mg试样组织生长均匀、致密,有明显的熔池线。晶粒内部为α-Al基体,边界为夹杂着WC的共晶Si相。WC/AlSi10Mg试样屈服强度达到337.75 MPa,抗拉强度高达514.00 MPa,伸长率为3.78%,相比同种工艺AlSi10Mg试样分别增加了4.73%,6.25%和35.97%。因此,SLM成型WC/AlSi10Mg纳米复合材料零件相比AlSi10Mg零件具有更好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶寒
黄俊强
张坚强
李聪聪
刘勇
关键词 AlSi10Mg选区激光熔化纳米WC显微组织力学性能    
Abstract:In order to further enhance the performance of the AlSi10Mg parts fabricated by selective laser melting, the WC/AlSi10Mg composite with 0.1%WC(mass fraction) was obtained by mixing the nano-WC and AlSi10Mg in mixing machine, and the specimen block was fabricated by the selective laser melting machine. By comparing the AlSi10Mg specimens fabricated by the same process, the effects of nano-WC on the microstructure formation and evolution of the microstructure and the mechanical properties of the microstructure were investigated. The results show that the WC/AlSi10Mg powder has good sphericity and the particle size distribution is concentrated in 20-60 μm. The WC/AlSi10Mg sample has the density of over 99% and hardness of about 158.89HV, which is 14.58% higher than that of the AlSi10Mg sample. The WC/AlSi10Mg samples grow uniformly and densely, with obvious molten pool lines. The inside of the crystal grain is α-Al matrix, and the boundary is a eutectic Si phase interposed with WC. The yield strength of the WC/AlSi10Mg sample reaches 337.75 MPa, the ultimate strength is as high as 514.00 MPa, and the elongation is 3.78%. Compared with the same process, AlSi10Mg samples are increased by 4.73%, 6.25% and 35.97%, respectively. Therefore, SLM-processed WC/AlSi10Mg composite parts have better application prospects than AlSi10Mg parts.
Key wordsAlSi10Mg    selective laser melting    nano-WC    microstructure    mechanical property
收稿日期: 2018-09-26      出版日期: 2020-03-18
中图分类号:  TB331  
通讯作者: 刘勇(1980-),男,教授,博士,主要从事表面改性技术、先进结构材料的相关研究工作,联系地址:江西省南昌市红谷滩新区学府大道999号南昌大学前湖校区机电工程学院(330031),E-mail:liuyong@ncu.edu.cn     E-mail: liuyong@ncu.edu.cn
引用本文:   
叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
YE Han, HUANG Jun-qiang, ZHANG Jian-qiang, LI Cong-cong, LIU Yong. Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting. Journal of Materials Engineering, 2020, 48(3): 75-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001131      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/75
[1] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development trend and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21.
[2] 王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4):89-98. WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36(4):89-98.
[3] CALIGNANO F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 2014, 64:203-213.
[4] HU Z H, ZHU H H, ZHANG H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87:17-25.
[5] TJONG S C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties[J]. Advanced Engineering Materials, 2010, 9(8):639-652.
[6] KUMAR S S, BAI V S, RAJKUMAR K V, et al. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction[J]. Journal of Physics D:Applied Physics, 2009, 42(42):175504.
[7] KUMAR S S, BAI V S, RAJASEKHARAN T. Aluminium matrix composites by pressureless infiltration:the metallurgical and physical properties[J]. Journal of Physics D:Applied Physics, 2008, 41(10):105403.
[8] WEI P, WEI Z, CHEN Z, et al. The AlSi10Mg samples produced by selective laser melting:single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 2017,408:38-50.
[9] LEVY G N, SCHINDEL R, KRUTH J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives[J]. CIRP Annals, 2003, 52(2):589-609.
[10] WU J, WANG X Q, WANG W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Materialia, 2016, 117:311-320.
[11] READ N, WANG W, ESSA K, et al. Selective laser melting of AlSi10Mg alloy:process optimisation and mechanical properties development[J]. Materials & Design, 2015, 65:417-424.
[12] LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284.
[13] PRASHANTH K G, SCUDINO S, KLAUSS H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting:effect of heat treatment[J]. Materials Science and Engineering:A, 2014, 590:153-160.
[14] LAM L P, ZHANG D Q, LIU Z H, et al. Phase analysis and microstructure characterisation of AlSi10Mg parts produced by selective laser melting[J]. Virtual & Physical Prototyping, 2015, 10(4):207-215.
[15] 林英华,陈志勇,李月华,等. TC4钛合金表面激光熔覆原位制备TiB陶瓷涂层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41(10):2694-2698. LIN Y H, CHEN Z Y, LI Y H, et al. Microstructure and hardness properties of in-situ TiB ceramic coatings prepared by laser cladding on TC4 titanium alloy[J].Infrared and Laser Engineering,2012,41(10):2694-2698.
[16] 赵龙志, 杨敏. 颗粒增强铝基复合材料的研究[J]. 热加工工艺, 2011, 40(20):107-110. ZHAO L Z, YANG M. Aluminum matrix composites particle reinforced[J]. Thermal processing technology, 2011, 40(20):107-110.
[17] 杨胶溪,胡星,王艳芳. TC轴承激光增材制造工艺及组织性能研究[J]. 材料工程, 2016, 44(7):61-66. YANG J X, HU X, WANG Y F. Microstructure and properties of laser additive manufacturing TC bearing[J]. Journal of Materials Engineering, 2016, 44(7):61-66.
[18] ABOULKHAIR N T, MASKERY I, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting:Microstructure and nano-mechanical properties[J]. Journal of Materials Processing Technology, 2016, 230:88-98.
[19] 张文奇,朱海红,胡志恒,等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8):918-926. ZHANG W Q, ZHU H H, HU Z H, et al. Study on laser selective melting forming of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8):918-926.
[20] LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284.
[21] LI Y, GU D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63:856-867.
[22] LI B, WANG H, JIE J, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al-7.5Si-0.5Mg alloy[J]. Materials & Design, 2011, 32(3):1617-1622.
[23] 邹章雄,项金钟,许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J]. 物理测试, 2012, 30(6):13-17. ZOU Z X, XIANG J Z, XU S Y. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range[J]. Physical Test, 2012, 30(6):13-17.
[24] VO N Q, DUNAND D C, SEIDMAN D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er[J]. Acta Materialia, 2014, 63:73-85.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[13] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn