Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 64-70    DOI: 10.11868/j.issn.1001-4381.2018.001136
  综述 本期目录 | 过刊浏览 | 高级检索 |
VOCs传感器敏感膜材料及敏感机理研究进展
沈小群1,2, 陈李1,3, 李顺波1,3, 徐溢1,3
1. 新型微纳器件与系统技术重点学科实验室, 重庆 400044;
2. 重庆大学 化学化工学院, 重庆 400044;
3. 重庆大学 光电工程学院, 重庆 400044
Research progress in sensitive membrane materials and adsorption mechanism of VOCs sensors
SHEN Xiao-qun1,2, CHEN Li1,3, LI Shun-bo1,3, XU Yi1,3
1. Key Disciplines Laboratory of Novel Micro-nano Devices and System Technology, Chongqing 400044, China;
2. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China;
3. School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(1670 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 在有机挥发性气体(volatile organic compounds,VOCs)传感器中,对VOCs产生选择性吸附作用的敏感膜是至关重要的部分,传感器的响应效能取决于敏感膜的材料和制备方法。本文总结了用于VOCs传感器的有机聚合物材料、无机纳米材料、超分子材料和复合材料等不同结构类型的敏感膜材料,通过分析其化学组成、制备方法及结构特征,探讨并比较VOCs在各种敏感膜材料上的吸附性能及相互作用机制,特别介绍了近年发展起来的金属有机框架(metal-organic frameworks,MOFs)材料在VOCs传感器中的应用及敏感机理。最后对敏感膜材料在VOCs传感器研发中面临的挑战及发展趋势进行了讨论和展望,包括传感器的灵敏度、交叉响应、寿命等性能问题,研发孔隙率高、比表面积大的敏感材料将有望解决这些挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈小群
陈李
李顺波
徐溢
关键词 敏感材料VOCs气体传感器敏感机理    
Abstract:Sensitive membranes that selectively adsorb VOCs (volatile organic compounds) are the key components of VOCs sensors, and sensors' response performance depends on membranes materials and preparation methods. The chemical composition, preparation methods and structural characteristics of sensing membranes materials of VOCs sensors were reviewed, including polymers, inorganics, supermolecules and composite materials, adsorption properties and mechanism of sensitive membrane materials for VOCs were compared and analyzed, especially the recent development of new material-metal-organic frameworks (MOFs) used in VOCs sensors. Finally, challenges and perspectives of sensitive membrane materials in VOCs sensors were also discussed and forecasted, including performance issues of sensors such as sensitivity, cross-response, lifetime, and research of sensitive materials with high porosity and large specific surface area is expected to solve these challenges.
Key wordssensitive material    VOCs    gas sensor    sensing mechanism
收稿日期: 2018-09-27      出版日期: 2019-11-21
中图分类号:  TB34  
基金资助: 
通讯作者: 徐溢(1966-),女,教授,博士,主要从事微纳生化分析、传感器及传感分析和微流控芯片分析等研究,联系地址:重庆市沙坪坝区重庆大学A区(400044),E-mail:xuyibbd@cqu.edu.cn     E-mail: xuyibbd@cqu.edu.cn
引用本文:   
沈小群, 陈李, 李顺波, 徐溢. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11): 64-70.
SHEN Xiao-qun, CHEN Li, LI Shun-bo, XU Yi. Research progress in sensitive membrane materials and adsorption mechanism of VOCs sensors. Journal of Materials Engineering, 2019, 47(11): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001136      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/64
[1] CURRAN K, UNDERHILL M, GIBSON L T, et al. The development of a SPME-GC/MS method for the analysis of VOC emissions from historic plastic and rubber materials[J]. Microchemical Journal, 2016, 124:909-918.
[2] SINGH K D, DABADE T, VAID H, et al. Computational fluid dynamics modeling of industrial flares operated in stand-by mode[J]. Industrial & Engineering Chemistry Research, 2012, 51(39):12611-12620.
[3] GUO H, GUO A, YANG G, et al. Optimization of a VOC sensor with a bilayered diaphragm using FBAR as strain sensing elements[J]. Sensors, 2017, 17(8):1764.
[4] SCHVTZE A, BAUR T, LEIDINGER M, et al. Highly sensitive and selective VOC sensor systems based on semiconductor gas sensors:how to?[J]. Environments, 2017, 4(1):20.
[5] BEARZOTTI A, MACAGNANO A, PAPA P, et al. A study of a QCM sensor based on pentacene for the detection of BTX vapors in air[J]. Sensors & Actuators B Chemical, 2017, 240:1160-1164.
[6] FLOREA A, GUO Z, CRISTEA C, et al. Anticancer drug det-ection using a highly sensitive molecularly imprinted electroch-emical sensor based on an electropolymerized microporous metal organic framework[J]. Talanta, 2015, 138:71-76.
[7] KHALIL R, HOMAEIGOHAR S, HÄUΒLER D, et al. A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)[J]. Sci Rep, 2016, 6(33895):1-10.
[8] ZHOU Y, ZHOU L, ZHANG X, et al. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity[J]. Microporous & Mesoporous Materials, 2016, 225:488-493.
[9] CELEBIOGLU A, UYAR T. Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal[J]. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 2018, 90:135-141.
[10] DRBOHLAVOVÁ J, HUBÁLEK J. Nanostructured polyp-yrrole-based ammonia and volatile organic compound sensors[J]. Sensors, 2017, 17(3):562.
[11] SALLEM-IDRISSI N, VANDERGHEM C, PACARY T, et al. Lignin degradation and stability:volatile organic compounds (VOCs) analysis throughout processing[J]. Polymer Degradation & Stability, 2016, 130:30-37.
[12] YAMAMOTO C F, PEREIRA E I, MATTOSO L H C, et al. Slow release fertilizers based on urea/urea-formaldehyde polymer nanocomposites[J]. Chemical Engineering Journal, 2016, 287:390-397.
[13] SRINIVES S, SARKAR T, MULCHANDANI A. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde[J]. Sensors & Actuators B Chemical, 2014, 194(4):255-259.
[14] AHAD I Z M, HARUN S W, GAN S N, et al. Polyaniline (PANI) optical sensor in chloroform detection[J]. Sensors & Actuators B Chemical, 2018, 261:97-105.
[15] WANG N, WANG X, JIA Y, et al. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection[J]. Carbohydrate Polymers, 2014, 108(1):192-199.
[16] SELVOLINI G, MARRAZZA G. MIP-based sensors:promi-sing new tools for cancer biomarker determination[J]. Sensors, 2017, 17(4):718.
[17] JHA S K, HAYASHI K. Polyacrylic acid polymer and aldeh-ydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor[J]. Sensors & Actuators B Chemical, 2015, 206:471-487.
[18] STRUCK O, DUYNHOVEN J P M V, VERBOOM W, et al. Cavity effect of calix [4] arenes in electrophilic aromatic substitution reactions[J]. Chemical Communications, 1996, 1996(13):1517-1518.
[19] KUMAR S, CHAWLA S, ZOU M C. Calixarenes based materials for gas sensing applications:a review[J]. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 2017, 88(1):1-30.
[20] OZMEN M, OZBEK Z, BAYRAKCI M, et al. Preparation and gas sensing properties of Langmuir-Blodgett thin films of calix[n]arenes:investigation of cavity effect[J]. Sensors & Actuators:B, 2014, 195:156-164.
[21] OSHIMA T, GOTO M, FURUSAKI S. Complex formation of cytochrome C with a calixarene carboxylic acid derivative:a novel solubilization method for biomolecules in organic media[J]. Biomacromolecules, 2002, 3(3):438-444.
[22] ÇAPAN R, ÖZBEK Z, GÖKTA? H, et al. Characterization of Langmuir-Blodgett films of a calix [8] arene and sensing properties towards volatile organic vapors[J]. Sensors & Actuators:B, 2010, 148(2):358-365.
[23] TEMEL F, TABAKCI M. Calix [4] arene coated QCM sensors for detection of VOC emissions:methylene chloride sensing studies[J]. Talanta, 2016, 153:221-227.
[24] NANDI A, NAG P, SAHA H, et al. Precursor dependent morphologies of microwave assisted ZnO nanostructures and their VOC detection properties[J]. Materials Today Proceedings, 2018, 5(3):9831-9838.
[25] 杨丰,王飞,贾若飞,等. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10):20-29. YANG F, WANG F, JIA R F, et al. Application research and progress of 0D, 1D and 2D ZnO nanomaterials[J]. Journal of Materials Engineering, 2018, 46(10):20-29.
[26] ROALES J, PEDROSA J, CANO M, et al. Anchoring effect on (tetra)carboxyphenyl porphyrin/TiO2 composite films for VOC optical detection[J]. RSC Advances, 2013, 4(4):1974-1981.
[27] THAMRI A, BACCAR H, STRUZZI C, et al. MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs[J]. Scientific Reports, 2016, 6:35130.
[28] 郑玉婴,曹宁宁. 氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展[J]. 材料工程, 2017, 45(6):118-128. ZHEN Y Y, CAO N N. Research progress on graphene oxide nanoribbons nanohybrids and graphene nanoribbons[J]. Journal of Materials Engineering, 2017, 45(6):118-128.
[29] 李元伟,张猛,王小健,等. 纳米多孔金属的制备方法及其力学性能的研究进展[J]. 航空材料学报, 2018, 38(5):10-23. LI Y W, ZHANG M, WANG X J, et al. Research progress in preparation and mechanical properties of nanoporous metals[J]. Journal of Aeronautical Materials, 2018, 38(5):10-23.
[30] TAYEBI N, SU X. Sensitive and selective gas/VOC detection using MOS sensor array for wearable and mobile applications[C]//Isocs/IEEE International Symposium on Olfaction & Electr-onic Nose. Canada:IEEE, 2017.
[31] YANG M, HE J. Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde[J]. Sensors & Actuators:B, 2016, 228:486-490.
[32] ENNIK E, ALEV O, ÖZTVRK Z Z. The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods[J]. Sensors & Actuators:B, 2016, 229:692-700.
[33] HORZUM N, TA?ÇIOGLU D, OKUR S, et al. Humidity sensing properties of ZnO-based fibers by electrospinning[J]. Talanta, 2011, 85(2):1105-1111.
[34] OKUR S, CEYLAN C, CULCULAR E. Humidity adsorption kinetics of a trypsin gel film[J]. Journal of Colloid & Interface Science, 2012, 368(1):470-473.
[35] ÖZTVRK S, KÖSEMEN A, KÖSEMEN Z A, et al. Electro-chemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors[J]. Sensors & Actuators B Chemical, 2016, 222:280-289.
[36] ZHU B L, XIE C S, WANG W Y, et al. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2[J]. Materials Letters, 2004, 58(5):624-629.
[37] SALAR-GARCÍA M J, ORTIZ-MARTÍNEZ V M, HERNÁ-NDEZ-FERNÁNDEZ F J, et al. Ionic liquid technology to recover volatile organic compounds (VOCs):a critical review[J]. Journal of Hazardous Materials, 2017, 321:484-499.
[38] YAN Y, JIANG X, ZHOU H, et al. Environmental monitoring of organic acids gas by ionic liquid coated QCM sensor[J]. Fresenius Environmental Bulletin, 2014, 23(5):1198-1202.
[39] ZHANG H, LIN L, DONG L, et al. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids[J]. Analytica Chimica Acta, 2017, 953:71-78.
[40] NOREÑA-CARO D, ÁLVAREZ-LÁINEZ M. Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde[J]. Materials & Design, 2016, 95:632-640.
[41] HUANG W, WANG X, JIA Y, et al. Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers[J]. RSC Advances, 2013, 3(45):22994-23000.
[42] NOMURA E, HOSODA A, TAKAGAKI M, et al. Self-organized honeycomb-patterned microporous polystyrene thin films fabricated by calix [4] arene derivatives[J]. Langmuir, 2010, 26(12):10266-10270.
[43] LIU J, WANG T, WANG B, et al. Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material[J]. Sensors & Actuators:B, 2017, 245:551-559.
[44] JISUN I, STERNER E S, SWAGER T M. Integrated gas sensing system of SWCNT and cellulose polymer concentrator for benzene, toluene, and xylenes[J]. Sensors, 2016, 16(2):183.
[45] HE Y F, JIANG Y D, TAI H L, et al. The investigation of quartz crystal microbalance (QCM) formaldehyde sensors based on PEI-MWCNTs composites[J]. Advanced Materials Research, 2014, 1030/1032:217-222.
[46] WANG X, CUI F, LIN J, et al. Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor[J]. Sensors & Actuators B Chemical, 2012, 171/172(8):658-665.
[47] LI W, WU X, HAN N, et al. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance[J]. Sensors & Actuators:B, 2016, 225:158-166.
[48] BURNETT B J, BARRON P M, CHOE W. Recent advances in porphyrinic metal-organic frameworks:materials design, synthetic strategies, and emerging applications[J]. Cryst-engcomm, 2012, 14(11):3839-3846.
[49] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.
[50] DHAKSHINAMOORTHY A, ASIRI A M, GARCíA H. Metal-organic framework (MOF) compounds:photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition, 2016, 55(18):5414-5445.
[51] KIM Y H, KUMAR P, KWON E E, et al. Metal-organic frameworks as superior media for thermal desorption-gas chromatography application:a critical assessment of MOF-5 for the quantitation of airborne formaldehyde[J]. Microchemical Journal, 2017, 132:219-226.
[52] LEIDINGER M, RIEGER M, WEISHAUPT D, et al. Trace gas VOC detection using metal-organic frameworks as pre-concentrators and semiconductor gas sensors[J]. Procedia Engineering, 2015, 120:1042-1045.
[53] XU F, SUN L, HUANG P, et al. A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance[J]. Sensors & Actuators:B, 2018, 254:872-877.
[1] 代雪萍, 王焱, 谢晓峰, 孙静. 挥发性有机物治理技术研究现状[J]. 材料工程, 2020, 48(11): 1-8.
[2] 阚侃, 王珏, 付东, Sementsov YURII, 宋美慧, 林雨斐, 史克英. Co3O4中空纳米球的可控制备及气敏性能[J]. 材料工程, 2019, 47(1): 50-57.
[3] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[4] 薄小庆, 刘唱白, 何越, 刘丽, 刘震, 王连元. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程, 2014, 0(8): 86-89.
[5] 李东海, 胡明, 孙凤云, 陈鹏, 孙鹏. 多孔硅气体传感器的制备及其气敏性能的研究[J]. 材料工程, 2009, 0(4): 71-74.
[6] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
[7] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn