Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 92-97    DOI: 10.11868/j.issn.1001-4381.2018.001138
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ce对铸态Mg-6Zn合金组织与导热性能的影响
代晓腾1, 马鸣龙1, 张奎1, 李永军1, 袁家伟1, 刘小稻2, 王胜青2
1. 有研工程技术研究院有限公司 有色金属材料制备加工国家重点实验室, 北京 101499;
2. 南京云海特种金属股份有限公司, 南京 211224
Effect of Ce on microstructure and thermal conductivity of as-cast Mg-6Zn alloy
DAI Xiao-teng1, MA Ming-long1, ZHANG Kui1, LI Yong-jun1, YUAN Jia-wei1, LIU Xiao-dao2, WANG Sheng-qing2
1. State Key Laboratory of Nonferrous Metals and Processes, GRIMAT Engineering Institute Co., Ltd., Beijing 101499, China;
2. Nanjing Yunhai Special Metals Co., Ltd., Nanjing 211224, China
全文: PDF(3984 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用光学金相显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、透射电镜(TEM)等分析手段研究铸态Mg-6Zn-xCe合金的微观组织,利用闪光法求得合金热导率随Ce含量的变化规律。结果表明:Mg-6Zn合金主要由α-Mg和Mg7Zn3相组成,添加稀土元素Ce后,合金中出现三元相Ce5(Mg,Zn)41,主要分布于晶界和枝晶间,三元相的产生对Mg7Zn3相有抑制作用;Ce元素的添加使合金共晶组织含量增多,且随Ce含量增加共晶组织分布的连续性增强;合金热导率随Ce含量的增加逐渐降低,原因可能是随着Ce含量升高,合金中共晶组织的体积分数增加,分布更加连续,对电子散射作用增强,延长电子传导路径,增大了热阻,使合金热导率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代晓腾
马鸣龙
张奎
李永军
袁家伟
刘小稻
王胜青
关键词 铸态Mg-Zn-Ce镁合金微观组织热导率    
Abstract:The microstructure of as-cast Mg-6Zn-xCe alloy was investigated by optical microscope (OM), X-ray diffraction (XRD), scanning election microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM)and the changing rule of thermal conductivity with the content of Ce was investigated using the flash method. The results show that Mg-6Zn alloy is mainly composed of α-Mg and Mg7Zn3 phases. The ternary phase Ce5 (Mg,Zn)41 which is mainly distributed between grain boundaries and dendrites appears in the alloy after the addition of the rare earth element Ce, and the appearance of ternary phase has an inhibitory effect on Mg7Zn3 phase. The content of eutectic structure is increased by the addition of Ce, and the distribution continuity is improved with the increase of Ce content. The thermal conductivity of the alloy is decreased with the increase of Ce content, which may be caused by the increase of volume fraction, more continuous distribution of eutectic structure in the alloy, the enhanced electron scattering, the extended electron conduction paths and the increased thermal resistance, ultimately the thermal conductivity of the alloy is reduced.
Key wordsas-cast Mg-Zn-Ce alloy    microstructure    thermal conductivity
收稿日期: 2018-09-27      出版日期: 2020-01-09
中图分类号:  TG146.2+2  
基金资助: 
通讯作者: 马鸣龙(1983-),男,高级工程师,博士,从事镁合金组织与性能研究,联系地址:北京市怀柔区雁栖经济开发区兴科东大街11号有研工程技术研究院有限公司(101499),E-mail:maminglong@grinm.com     E-mail: maminglong@grinm.com
引用本文:   
代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
DAI Xiao-teng, MA Ming-long, ZHANG Kui, LI Yong-jun, YUAN Jia-wei, LIU Xiao-dao, WANG Sheng-qing. Effect of Ce on microstructure and thermal conductivity of as-cast Mg-6Zn alloy. Journal of Materials Engineering, 2020, 48(1): 92-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001138      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/92
[1] 曾小勤,史枭颖.稀土镁合金强韧性设计与开发[J].航空材料学报,2017,37(1):18-25. ZENG X Q,SHI X Y.Strengthening and toughening design and development of Mg-rare earth alloys[J].Journal of Aeronautical Materials,2017,37(1):18-25.
[2] 袁杰,郭宝会.Mg合金在汽车工业中的应用进展[J].铸造技术,2017,38(12):2799-2804. YUAN J,GUO B H.Research advances of magnesium alloys in automobile applications[J].Foundry Technology,2017,38(12):2799-2804.
[3] 王群,王婧超,李雄魁,等.航天用轻质结构材料研究进展及应用需求[J].宇航材料工艺,2017,47(1):1-4. WANG Q,WANG J C,LI X K,et al.Research progress and application requirements of lightweight structure materials for aerospace applications[J].Aerospace Materials & Technology,2017,47(1):1-4.
[4] 王荣贵.镁合金散热器挤压工艺研究[J].中国金属通报,2009(46):42-43. WANG R G. Study on extrusion process of magnesium alloy radiator[J].China Metal Bulletin,2009(46):42-43.
[5] 吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281-292. WU G H,CHEN Y S,DING W J.Current research,application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281-292.
[6] LUO A A.Magnesium casting technology for structural applic-ations[J].Journal of Magnesium & Alloys,2013,1(1):2-22.
[7] LEE S,HAM H J,SU Y K,et al.Thermal conductivity of magn-esium alloys in the temperature range from -125℃ to 400℃[J].International Journal of Thermophysics,2013,34(12):2343-2350.
[8] YUAN J W,ZHANG K,LI T,et al.Anisotropy of thermal cond-uctivity and mechanical properties in Mg-5Zn-1Mn alloy[J].Materials & Design,2012,40:257-261.
[9] YING T,ZHENG M Y,LI Z T,et al.Thermal conductivity of as-cast and as-extruded binary Mg-Zn alloys[J].Journal of Alloys & Compounds,2014,608(38):19-24.
[10] 袁家伟.高导热Mg-Zn-Mn合金及其性能研究[D].北京:北京有色金属研究总院,2013. YUAN J W.Study on high thermal conductivity Mg-Zn-Mn alloy and its properties[D].Beijing:General Research Institute for Nonferrous Metals,2013.
[11] YUAN J W,ZHANG K,ZHANG X,et al.Thermal character-istics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J].Journal of Alloys & Compounds,2013,578(6):32-36.
[12] 杨明波,潘复生,李忠盛,等.镁合金铸态晶粒细化技术的研究进展[J].铸造,2005,54(4):314-319. YANG M B,PAN F S,LI Z S,et al.Research and development of the as-cast grain refinement technology of magnesium alloys[J].Foundry,2005,54(4):314-319.
[13] 余琨,黎文献,张世军.Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程,2005,34(7):1013-1016. YU K,LI W X,ZHANG S J.Mechanism of grain refining by adding cerium in Mg and Mg alloys[J].Rare Metal Materials and Engineering,2005,34(7):1013-1016.
[14] 苏再军,杨树忠,刘楚明,等.Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响[J].材料工程,2017,45(9):116-122. SU Z J,YANG S Z,LIU C M,et al.Effect of Zn on micros-tructure and mechanical properties of as-cast Mg-Y-Nd-Zr alloys[J].Journal of Materials Engineering,2017,45(9):116-122.
[15] LI Q,FAN S,PENG J,et al.Effects of Ce on microstructure and mechanical properties of ZM21 magnesium alloy[J].Materials Research Innovations,2009,18(Suppl 4):178-182.
[16] 吴安如,夏长清.铈含量对ZK60镁合金组织和性能的影响[J].材料热处理学报,2006,27(1):45-48. WU A R,XIA C Q.Effect of cerium content on microstructure and properties of ZK60 magnesium alloy[J].Transactions of Materials and Heat Treatment,2006,27(1):45-48.
[17] 袁家伟,李婷,李兴刚,等.Mg-4Zn-1Mn镁合金均匀化热处理及导热率[J].材料热处理学报,2012,33(4):27-32. YUAN J W,LI T,LI X G,et al.Homogenizing heat treatment and thermal conductivity of Mg-4Zn-1Mn magnesium alloy[J].Transactions of Materials and Heat Treatment,2012,33(4):27-32.
[18] 潘虎成.镁合金导热性能的研究[D].重庆:重庆大学,2013. PAN H C.Study on thermal conductivity of magnesium alloy[D].Chongqing:Chongqing University,2013.
[19] 游国强,白世磊,明玥,等.镁合金导热性能研究进展[J].功能材料,2016,47(5):30-35. YOU G Q, BAI S L, MING Y, et al.Research progress on thermal conductivity of magnesium alloys[J].Journal of Functional Materials,2016,47(5):30-35.
[20] GAO X,NIE J F.Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J].Scripta Materialia,2007,57(7):655-658.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[3] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[4] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[5] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[6] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[7] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[8] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[11] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[12] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[13] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[14] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn