Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 18-25    DOI: 10.11868/j.issn.1001-4381.2018.001162
  综述 本期目录 | 过刊浏览 | 高级检索 |
机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展
党赏1, 李艳国2, 邹芹1,2, 王明智2, 熊建超1, 罗文奇1
1. 燕山大学 机械工程学院, 河北 秦皇岛 066004;
2. 燕山大学 亚稳材料制备技术与科学国家重点实验室, 河北 秦皇岛 066004
Progress in Fe-Mn-Si based shape memory alloys prepared by mechanical alloying and powder metallurgy
DANG Shang1, LI Yan-guo2, ZOU Qin1,2, WANG Ming-zhi2, XIONG Jian-chao1, LUO Wen-qi1
1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China;
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
全文: PDF(6155 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 铁基形状记忆合金由于价格低廉、强度高、加工性能好、可焊接等优点引起广泛重视。机械合金化(MA)和粉末冶金(PM)作为制备材料的新工艺,可以用来制备性能优越的形状记忆合金。本文详述了机械合金化和粉末冶金工艺在制备Fe-Mn-Si基形状记忆合金过程中对合金相变、组织与性能的影响,以及此类合金在新领域的应用。最后提出了现阶段在研究MA/PM工艺制备Fe-Mn-Si基SMA中有关工艺参数、相变机制以及回复应力和低温应力松弛所存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党赏
李艳国
邹芹
王明智
熊建超
罗文奇
关键词 Fe-Mn-Si形状记忆合金机械合金化粉末冶金    
Abstract:Iron-based shape memory alloys have recently attracted widespread attention due to their low cost, excellent workability,machinability and good weldability, and has been identified as a new shape memory material with promising development. Mechanical alloying (MA) and powder metallurgy (PM) are new methods for the preparation of materials, which can be used to prepare shape memory alloy with superior properties. The effect of MA and PM on the phase transformation, microstructure and properties of Fe-Mn-Si-based shape memory alloys, and the application of such alloys in new fields were discussed in details. At last, the problems in the study of MA/PM process for preparing Fe-Mn-Si based SMA, such as process parameters, phase transformation mechanism, recovery stress and low temperature stress relaxation are pointed aod.
Key wordsFe-Mn-Si    shape memory alloy    mechanical alloying    powder metallurgy
收稿日期: 2018-10-06      出版日期: 2019-05-17
中图分类号:  TB381  
通讯作者: 邹芹(1978-),女,教授,博士,研究方向:新型超硬刀具、高熵合金、形状记忆合金,联系地址:河北省秦皇岛市河北大街西段438号燕山大学机械工程学院(066004),E-mail:zq@ysu.edu.cn     E-mail: zq@ysu.edu.cn
引用本文:   
党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
DANG Shang, LI Yan-guo, ZOU Qin, WANG Ming-zhi, XIONG Jian-chao, LUO Wen-qi. Progress in Fe-Mn-Si based shape memory alloys prepared by mechanical alloying and powder metallurgy. Journal of Materials Engineering, 2019, 47(5): 18-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001162      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/18
[1] MA J, KARAMAN I. Expanding the repertoire of shape memory alloys[J]. Science, 2010,327(5972):1468-1469.
[2] SUN L, HUANG W M, DING Z, et al. Stimulus-responsive shape memory materials:a review[J]. Materials & Design, 2012,33(1):577-640.
[3] LEE W J, WEBER B, LEINENBACH C. Recovery stress form-ation in a restrained Fe-Mn-Si-based shape memory alloy used for prestressing or mechanical joining[J]. Construction & Building Materials, 2015,95:600-610.
[4] 林成新,徐凯池,张佳琪. Fe-Mn-Si基形状记忆合金记忆效应的研究现状[J]. 材料保护, 2016(增刊1):143-147. LIN C X, XU K C, ZHANG J Q. Research status of memory effect of Fe-Mn-Si based shape memory alloy[J]. Materials Protection, 2016(Suppl 1):143-147.
[5] JANI J M, LEARY M, SUBIC A, et al. A review of shape mem-ory alloy research, applications and opportunities[J]. Materials & Design, 2014,56(4):1078-1113.
[6] RAO A, SRINIVASA A R, REDDY J N. Design of shape mem-ory alloy (SMA) actuators[M]. Heidelberg:Springer, 2015.
[7] SATO A, CHISHIMA E, SOMA K, et al. Shape memory effect in γ→ε transformation in Fe-30Mn-1Si alloy single crystals[J]. Acta Metallurgica, 1982,30(6):1177-1183.
[8] MURAKAMI M, OTSUKA H, SUZUKI H, et al. Effect of alloying content, phase and magnetic transformation on shape memory effect of Fe-Mn-Si alloys[J]. Transactions of the Iron and Steel Institute of Japan, 1986,27(3):88-89.
[9] OTSUKA H, YAMADA H, MARUYAMA T, et al. Effects of alloying additions on Fe-Mn-Si shape memory alloys[J]. Transactions of the Iron & Steel Institute of Japan, 1990,30(8):674-679.
[10] MORIYA Y, KIMURA H, ISHIZAKI S, et al. Properties of Fe-Cr-Ni-Mn-Si (-Co) shape memory alloys[J]. Journal De Physique Ⅳ, 1991,1(C4):433-437.
[11] 李建忱,蒋青,沈平. 合金元素对铁锰硅系形状记忆合金层错能的影响[J]. 功能材料, 1999,30(2):164-165. LI J C, JIANG Q, SHEN P. Influence of alloy elements on stacking fault energy of Fe-Mn-Si shape memory alloy[J]. Journal of Functional Materials, 1999,30(2):164-165.
[12] 龙昌柏,龙霓东. 不同合金成分对Fe-Mn-Si系合金形状记忆效应的影响[J]. 热加工工艺, 2008,37(24):117-120. LONG C B, LONG N D. Effects of different alloy composition on shape memory effect of Fe-Mn-Si alloy[J]. Hot Working Technology, 2008,37(24):117-120.
[13] LI J C, ZHAO M, JIANG Q. Alloy design of Fe-Mn-Si-Cr-Ni shape-memory alloys related to stacking-fault energy[J]. Meta-llurgical & Materials Transactions A, 2000,31(3):581-584.
[14] SATO A, MORI T. Development of a shape memory alloy Fe-Mn-Si[J]. Materials Science and Engineering:A, 1991, 29(1/2):197-204.
[15] BARUJ A, KIKUCHI T, KAJIWARE S, et al. Improvement of shape memory properties of NbC containing Fe-Mn-Si based shape memory alloys by simple thermomechanical treatments[J]. Materials Science & Engineering:A, 2004, 378(1):333-336.
[16] PENG H, CHEN J, WANG Y, et al. Key factors achieving large recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys:a review[J]. Advanced Engineering Materials, 2017, 20(3):1-18.
[17] PENG H, WANG G, WANG S, et al. Key criterion for achie-ving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys[J]. Materials Science & Engineering:A, 2018, 712:37-49.
[18] SMITH A M O, PIERCE J. Effects of the thermodynamic para-meters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. Calphad-computer Cou-pling of Phase Diagrams & Thermochemistry, 2010,34(2):167-175.
[19] MAJI B C, KRISHNAN M, GOUTHAMA, et al. Role of Si in improving the shape recovery of Fe-Mn-Si-Cr-Ni shape memory alloys[J]. Physics Procedia, 2010,10(8):111-116.
[20] MATSUMIYA T. Steelmaking technology for a sustainable soc-iety[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2011,35(4):627-635.
[21] KIRINDI T, GVLER E, DIKICI M. Effects of homogenization time on the both martensitic transformations and mechanical properties of Fe-Mn-Si-Cr-Ni shape memory alloy[J]. Journal of Alloys & Compounds, 2007,433(1):202-206.
[22] BERNS H, THEISEN W. Ferrous materials:steel and cast iron[M]. Berlin:Springer, 2008:190-207.
[23] SAITO T, GASKA K, TAKASAKI A, et al. Fabrication of Fe-Mn-Si alloys by mechanical alloying and direct current sintering[J]. Jurnal Mekanikal, 2010,30:62-67.
[24] TORKAN S, ATAIE A, ABDIZADEH H. Investigation on ph-ase evolution in mechanically alloyed nano-structured Fe-Si system[J]. Advanced Materials Research, 2014,829:703-706.
[25] 邹芹,黄洪涛,王明智.金属基滑动轴承材料研究进展[J]. 燕山大学学报, 2016, 40(1):1-8. ZOU Q,HUANG H T,WANG M Z. Research progress of metal-based sliding bearing materials[J]. Journal of Yanshan University, 2016, 40(1):1-8.
[26] RAHIMIAN M, PARVIN N, EHSANI N. The effect of prod-uction parameters on microstructure and wear resistance of powder metallurgy Al-AlO composite[J]. Materials & Design, 2011,32(2):1031-1038.
[27] 肖柱,李周,龚深,等. 机械合金化制备形状记忆合金的研究[C]//2007高技术新材料产业发展研讨会暨材料导报编委会年会论文集. 2007:121-131. XIAO Z, LI Z, GONG S, et al. Study on the preparation of shape memory alloy by mechanical alloying[C]//2007 Proceedings of the High-tech New Materials Industry Develo-pment Seminar and Materials Guide Editorial Board. Materials Reports,2007:121-131.
[28] BAHADOR A, HAMZAH E, KONDOH K, et al. Mechanical and superelastic properties of disk-laser welded Ti-Ni shape-memory alloys produced by powder metallurgy[J]. Journal of Materials Processing Technology, 2017,248(5):198-206.
[29] MAZZER E M, GARGARELLA P, CAVA R D, et al. Effect of dislocations and residual stresses on the martensitic transfo-rmation of Cu-Al-Ni-Mn shape memory alloy powders[J]. Jour-nal of Alloys & Compounds, 2017,723:841-849.
[30] XU Z, HODGSON M A, CAO P. A comparative study of powder metallurgical (PM) and wrought Fe-Mn-Si alloys[J]. Materials Science & Engineering:A, 2015,630:116-124.
[31] ZHANG Z, SANDSTRÖM R, FRISK K, et al. Characteriza-tion of intermetallic Fe-Mn-Si powders produced by casting and mechanical ball milling[J]. Powder Technology, 2003,137(3):139-147.
[32] HE Q, JIA C, MENG J. Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering[J]. Materials Science & Engineering:A, 2006,428(1):314-318.
[33] LIU T, LIU H Y, ZHAO Z T, et al. Mechanical alloying of Fe-Mn and Fe-Mn-Si[J]. Materials Science & Engineering:A,1999, 271(1/2):8-13.
[34] ORO R, HRYHA E, CAMPOS M, et al. Effect of processing conditions on microstructural features in Mn-Si sintered steels[J]. Materials Characterization, 2014,95(3):105-117.
[35] SAITO T, KAPUSTA C, TAKASAKI A. Synthesis and char-acterization of Fe-Mn-Si shape memory alloy by mechanical allo-ying and subsequent sintering[J]. Materials Science & Engin-eering:A, 2014,592(2):88-94.
[36] XU Z, HODGSON M A, CAO P. Effects of mechanical milling and sintering temperature on the densification, microstructure and tensile properties of the Fe-Mn-Si powder compacts[J]. Journal of Materials Science & Technology, 2016,32(11):1161-1170.
[37] WEN Y H, ZHANG W, LI N, et al. Principle and realization of improving shape memory effect in Fe-Mn-Si-Cr-Ni alloy through aligned precipitations of second-phase particles[J]. Acta Mater-ialia, 2007,55(19):6526-6534.
[38] ARRUDA G J, BUONO V T L, ANDRADE M S. The influe-nce of deformation on the microstructure and transformation temperatures of Fe-Mn-Si-Cr-Ni shape memory alloys[J]. Materials Science & Engineering:A, 1999, 273(3):528-532.
[39] DOGAN A, ARSLAN H. Effect of ball-milling conditions on microstructure during production of Fe-20Mn-6Si-9Cr shape memory alloy powders by mechanical alloying[J]. Journal of Thermal Analysis & Calorimetry, 2012,109(2):933-938.
[40] PRICOP B, SÖYLER U, ÖZKAL B, et al. A study of marten-site formation in powder metallurgy Fe-Mn-Si-Cr-Ni shape mem-ory alloys[J]. Materials Today Proceedings, 2015,2:789-792.
[41] PRICOP B, SÖYLER U, COM?NECI R I, et al. Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy[J]. Physics Procedia, 2010,10(12):125-131.
[42] BUJOREANU L G, STANCIU S, ÖZKAL B, et al. Compara-tive study of the structures of Fe-Mn-Si-Cr-Ni shape memory alloys obtained by classical and by powder metallurgy, respec-tively[C]//European Symposium on Martensitic Transforma-tions. Paris:EDP Sciences,2009:05003.
[43] PRICOP B, SÖYLER U, LOHAN N M, et al. Thermal beha-vior of mechanically alloyed powders used for producing an Fe-Mn-Si-Cr-Ni shape memory alloy[J]. Journal of Materials Engineering & Performance, 2012,21(11):2407-2416.
[44] PRICOP B, MIHALACHE E, LOHAN M N, et al. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA[C]//Matec Web of Conferences. Paris:EDP Sciences, 2015, 33:04004.
[45] PRICOP B, SÖYLER U, LOHAN N M, et al. Mechanical alloying effects on the thermal behaviour of a Fe-Mn-Si-Cr-Ni shape memory alloy under powder form[J]. Journal of Optoelectronics & Advanced Materials, 2011,5(5):569-575.
[46] MOCANU M, MIHALACHE E, PRICOP B, et al. The Influence of α'(bcc) Martensite on the Dynamic and Magnetic Response of Powder Metallurgy Fe-Mn-Si-Cr-Ni Shape Memory Alloys[C]//Proceedings of the International Conference on Martensitic Transformations:Chicago. Springer, Cham, 2018:99-108.
[47] PRICOP B, SÖYLER U, ÖZKAL B, et al. Influence of Mech-anical Alloying on the Behavior of Fe-Mn-Si-Cr-Ni Shape Mem-ory Alloys Made by Powder Metallurgy[J]. Materials Science Forum, 2013,739(1):237-241.
[48] AMINI R, SHAMSIPOOR A, GHAFFARI M, et al. Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe-32Mn-6Si alloys[J]. Materials Characterization, 2013,84(10):169-174.
[49] SPIRIDON I P, PRICOP B, SURU M G, et al. The influence of heat treatment atmosphere and maintaining period on the homogeneity degree of a Fe-Mn-Si-Cr-Ni shape memory alloy obtained through powder metallurgy[J]. Journal of Opto-electronics & Advanced Materials, 2013, 15(7/8):730-733.
[50] PRICOP B, ÖZKAL B, SÖYLER U, et al. Structural changes caused by high-temperature holding of powder shape memory alloy Fe-14Mn-6Si-Cr-5Ni[J]. Metal Science & Heat Treatme-nt, 2016,57(9/10):553-558.
[51] SÖYLER A U, ÖZKAL B, BUJOREANU L G. Improved shape memory characteristics of Fe-14Mn-6Si-9Cr-5Ni alloy via mechanical alloying[J]. Journal of Materials Engineering & Performance, 2014,23(7):2357-2361.
[52] PRICOP B, SÖYLER U, LOHAN N M, et al. Thermal beh-avior of mechanically alloyed powders used for producing an Fe-Mn-Si-Cr-Ni shape memory alloy[J]. Journal of Materials Engineering & Performance, 2012,21(11):2407-2416.
[53] 徐飞,张桢,申斌,等. 粉末冶金法制备铁基形状记忆合金工艺研究[J]. 科技创新导报, 2010(1):58. XU F, ZHANG Z, SHEN B,et al. Study on preparation of iron-based shape memory alloy by powder metallurgy[J]. Science and Technology Innovation Herald, 2010(1):58.
[54] XU Z, HODGSON M, CHANG K, et al. Effect of sintering time on the densification, microstructure, weight loss and tensile properties of a powder metallurgical Fe-Mn-Si alloy[J]. Metals-Open Access Metallurgy Journal, 2017,81(7):1-16.
[55] CHERDYNTSEV V V, PUSTOV L Y, KALOSHKIN S D, et al. Phase transformations during deformation of Fe-Ni and Fe-Mn alloys produced by mechanical alloying[J]. Physics of Metals & Metallography, 2007,104(4):408-414.
[56] DELLA ROVERE C A, SILVA R, HAMMER P, et al. Corr-osion behavior of Fe-Mn-Si-Cr-Ni-Co shape memory stainless steel in highly oxidizing medium[J]. Materials Science Forum, 2016, 869:669-674.
[57] 张存信,刘洁. 形状记忆不锈钢的研究进展[J]. 兵器材料科学与工程,2003,26(4):47-54. ZHANG C X,LIU J. Research progress of shape memory stainless steel[J]. Ordnance Material Science and Engineering, 2003, 26(4):47-54.
[58] LI K, DONG Z, LIU Y, et al. A newly developed Fe-based shape memory alloy suitable for smart civil engineering[J]. Smart Materials & Structures, 2013, 22(4):045002.
[59] CLADERA A, WEBER B, LEINENBACH C, et al. Iron-based shape memory alloys for civil engineering structures:an over-view[J]. Construction & Building Materials, 2014, 63(4):281-293.
[60] SAWAGUCHI T, MARUYAMA T, OTSUKA H, et al. Design concept and applications of Fe-Mn-Si based alloys-from shape-memory to seismic response control[J]. Materials Transactions, 2016,57(3):283-293.
[61] LIU B, ZHENG Y F, RUAN L. In vitro investigation of Fe-30Mn-6Si shape memory alloy as potential biodegradable metallic material[J]. Materials Letters, 2011,65(3):540-543.
[62] XU Z, HODGSON M A, CAO P. A comparative study of pow-der metallurgical (PM) and wrought Fe-Mn-Si alloys[J]. Materials Science & Engineering:A, 2015,630:116-124.
[63] 周超玉,林成新,徐鹏,等. 不锈钢表面激光熔覆原位生成Fe-Mn-Si记忆合金涂层研究[J]. 稀有金属材料与工程, 2014, 43(12):3042-3046. ZHOU C Y, LIN C X, XU P, et al.In situ synthesis of Fe-Mn-Si memory alloy on the surface of stainless steel by laser cladding[J]. Rare Metal Materials and Engineering, 2014, 43(12):3042-3046.
[1] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[2] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[3] 蒋建军, 胡毅, 陈星, 王林文, 任恩毅, 高新宇, 邓国力. 形状记忆智能复合材料的发展与应用[J]. 材料工程, 2018, 46(8): 1-13.
[4] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[5] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[6] 李红, 陶博浩, 栗卓新, 郭福. 超声振动与激光加热耦合条件下Al基钎料在TiNi形状记忆合金表面润湿铺展行为[J]. 材料工程, 2016, 44(3): 66-71.
[7] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[8] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[9] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[10] 冯永宝, 唐传明, 丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014, 0(2): 1-6,12.
[11] 张家敏, 易健宏, 甘国友, 严继康, 杜景红, 刘意春. 烧结TiH2粉末制备钛合金的工艺及组织[J]. 材料工程, 2013, 0(10): 64-70.
[12] 廖璐, 周张健, 李明. 14CrODS铁素体钢的制备及其拉伸性能[J]. 材料工程, 2012, 0(4): 42-46.
[13] 司乃潮, 郑利波, 司松海, 李镭, 翟玉敬. 冷变形和中温处理对TiNiCr形状记忆合金相变的影响[J]. 材料工程, 2011, 0(7): 20-25.
[14] 马旭梁, 李莉, 朱成武, 王香, 郑玉峰. 多孔NiTi形状记忆合金的制备及性能[J]. 材料工程, 2011, 0(3): 6-10,59.
[15] 杨根林, 王二敏, 韩劲, 倪志铭. 真空感应熔炼用石墨坩埚对Ni47Ti44Nb9形状记忆合金质量的影响[J]. 材料工程, 2011, 0(11): 51-52,57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn