Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 19-33    DOI: 10.11868/j.issn.1001-4381.2018.001165
  综述 本期目录 | 过刊浏览 | 高级检索 |
容错事故燃料包壳用FeCrAl合金的研究进展
黄希1,2, 李小燕2, 方晓东2, 熊子成2, 彭奕超2, 韦丽华3
1. 东华理工大学 江西省质谱科学与仪器重点实验室, 南昌 330013;
2. 东华理工大学 核科学与工程学院, 南昌 330013;
3. 东华理工大学 信息工程学院, 南昌 330013
Research progress in FeCrAl alloys for accident-tolerant fuel cladding
HUANG Xi1,2, LI Xiao-yan2, FANG Xiao-dong2, XIONG Zi-cheng2, PENG Yi-chao2, WEI Li-hua3
1. Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China;
2. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China;
3. School of Information Engineering, East China University of Technology, Nanchang 330013, China
全文: PDF(7451 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 福岛事故后,人们迫切需要开发相应的燃料包壳材料以忍受严重事故发生时的极端工况,从而提高核电站的事故承受能力。尽管FeCrAl合金的宏观中子吸收截面要远远高于锆合金,但其在严重事故下良好的耐腐蚀性、优越的高温力学性能及抗辐照损伤能力,使其被列为事故容错燃料包壳的候选材料之一。然而,现有FeCrAl合金难以满足核电站用材料的要求,因此需对其进行优化,以获得更佳的性能。本文系统总结了近年来关于优化后FeCrAl合金的腐蚀行为、力学性能、辐照后的微观结构及力学性能变化、焊接性及加工性等方面的研究进展,分析了FeCrAl合金的高温腐蚀机理以及引起FeCrAl合金微观结构及力学性能变化的主要原因,提出了FeCrAl合金在高温腐蚀、焊接性以及加工性等过程中存在的主要问题以及未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄希
李小燕
方晓东
熊子成
彭奕超
韦丽华
关键词 容错事故FeCrAl合金腐蚀行为辐照微观结构演变    
Abstract:After the Fukushima accident, there is an urgent need to develop fuel cladding materials to meet the performance requirements of materials under severe accident conditions, and therefore greatly improving the accident tolerance of nuclear power plants. Although the macroscopic thermal neutron absorption capture cross-section of the FeCrAl alloy is much higher than that of zirconium alloy, however, its good corrosion resistance, high temperature mechanical properties and radiation damage resistance in severe accident conditions make it become a candidate material of accident-tolerant fuel cladding. Currently, the performance of various industrial FeCrAl alloys can not meet the requirements of materials for nuclear power plants. Therefore, the FeCrAl alloy needs to be optimized in order to obtain a better performance. The research progress of corrosion behavior, mechanical properties, microstructural evolution and mechanical properties under irradiation, weldability and processability of FeCrAl alloys are summarized systematically. Meanwhile, the corrosion mechanism at high temperatures and the reasons for the change of microstructure and mechanical properties of FeCrAl alloy are analyzed. Besides, the main problems of FeCrAl alloy of high temperature corrosion behavior, weldability, workability and the future research directions are proposed.
Key wordsaccident tolerant    FeCrAl alloy    corrosion behavior    irradiation    microstructural evolution
收稿日期: 2018-10-06      出版日期: 2020-03-18
中图分类号:  V258  
通讯作者: 李小燕(1974-),女,教授,博士,主要从事放射性废物处理与处置以及核电站结构材料研究,联系地址:江西省南昌市经开区418号东华理工大学核科学与工程学院(330013),E-mail:xiaoyanli08@163.com     E-mail: xiaoyanli08@163.com
引用本文:   
黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
HUANG Xi, LI Xiao-yan, FANG Xiao-dong, XIONG Zi-cheng, PENG Yi-chao, WEI Li-hua. Research progress in FeCrAl alloys for accident-tolerant fuel cladding. Journal of Materials Engineering, 2020, 48(3): 19-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001165      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/19
[1] ZINKLE S J, TERRANI K A, SNEAD L L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems[J]. Current Opinion in Solid State Materials Science, 2016, 20(6):401-410.
[2] CHARIT I. Accident tolerant nuclear fuels and cladding materials[J]. JOM, 2018, 70:173-175.
[3] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs:a perspective[J]. Journal of Nuclear Materials, 2014, 448(1/3):374-379.
[4] YAO T K, GONG B W, HE L F, et al. In-situ TEM study of the ion irradiation behavior of U3Si2 and U3Si5[J]. Journal of Nuclear Materials, 2018, 511:56-63.
[5] MIDDLEBURGH S C, CLAISSE A, ANDERSSON D A, et al. Solution of hydrogen in accident tolerant fuel candidate material:U3Si2[J]. Journal of Nuclear Materials, 2018, 501:234-237.
[6] LIU R, ZHOU W, CAI J. Multiphysics modeling of accident tolerant fuel cladding U3Si2-FeCrAl performance in a light water reactor[J]. Nuclear Engineering and Design, 2018, 330:106-116.
[7] HELLSTROM K, HALL J, MALMBERG P, et al. Mitigation of fireside corrosion in power plants:the combined effect of sulfur dioxide and potassium chloride on the corrosion of a FeCrAl alloy[J]. Energy and Fuels, 2014, 28(9):6116-6129.
[8] TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1/3):420-435.
[9] FIELD K G, SNEAD M A, YAMAMOTO Y, et al. Handbook on the material properties of FeCrAl alloys for nuclear power production applications[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2017.
[10] YAMAMOTO Y, GUSSEV M N, KIM B K, et al. Optimized properties on base metal and thin-walled tube of Generation II ATF FeCrAl[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2015.
[11] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467:703-716.
[12] QU H P, LANG Y P, YAO C F, et al. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets[J]. Materials Science and Engineering:A, 2013, 562:9-16.
[13] EJENSTAM J, THUVANDER M, OLSSON P, et al. Microstructural stability of Fe-Cr-Al alloys at 450-550℃[J]. Journal of Nuclear Materials, 2015, 457:291-297.
[14] GUSSEV M N, FIELD K G, YAMAMOTO Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys[J]. Materials & Design, 2017, 129:227-238.
[15] YAMAMOTO Y, YANG Y, FIELD K G, et al. Letter report documenting progress of second generation ATF FeCrAl alloy fabrication[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2014.
[16] 潘钱付,张瑞谦,王辉,等. 一种核反应堆结构材料用FeCrAl基合金材料及其制备方法:107142424[P]. 2017-05-27.
[17] 杜沛南,王辉,张瑞谦,等. 一种耐事故核电燃料元件用FeCrAl基合金及其制备方法:107142421[P]. 2017-05-27.
[18] 王辉,杜沛南, 张瑞谦,等. 一种核反应堆燃料元件包壳用FeCrAl基合金材料及其制备方法:107217205[P]. 2017-05-27.
[19] 张瑞谦,王辉,陈乐,等. 一种核反应堆包壳用FeCrAl基合金材料及其制备方法:106987780[P]. 2017-05-27.
[20] BADINI C, LAURELLA F. Oxidation of FeCrAl alloy:influence of temperature and atmosphere on scale growth rate and mechanism[J]. Surface and Coatings Technology, 2001, 135(2/3):291-298.
[21] KOFSTAD P. High temperature corrosion[M]. London:Elsevier Applied Science Publishers, 1988:342-408.
[22] JOSEFSSON H, LIU F, SVENSSON J E, et al. Oxidation of FeCrAl alloys at 500-900℃ in dry O2[J]. Materials and Corrosion, 2005, 56(11):801-805.
[23] ANDRIEU E, GERMIDIS A, MOLINS R. High temperature oxidation of thin FeCrAl strips[J]. Materials Science Forum, 1997, 251:357-364.
[24] JEDLINSKI J, COHAT B, BORCHARDT G. The influence of yttrium on the oxidation behaviour of Fe-19Cr-5Al alloy at high temperatures:Ⅰ oxidation resistance[J]. High Temperature Materials and Processes, 1994, 13(3):241-258.
[25] ZHU C, ZHAO X, CHEN Y, et al. Spallation behaviour of alumina scale formed on FeCrAlY alloy after isothermal oxidation[J]. Oxidation of Metals, 2016, 85(3/4):391-408.
[26] TOLOPYGO V K, CLARKE D R. Spalling failure of α-alumina films grown by oxidation:Ⅰ dependence on cooling rate and metal thickness[J]. Materials Science and Engineering:A, 2000, 278(1/2):142-150.
[27] DEADMORE D L, LOWELL C E. The effect of ΔT (oxidizing temperature minus cooling temperature) on oxide spallation[J]. Oxidation of Metals, 1977, 11(2):91-106.
[28] AL-BADAIRY H, TATLOCK G J, BENNETT M J. A comparison of breakaway oxidation in wedge-shaped and parallel sided coupons of FeCrAl alloys[J]. Materials at High Temperature, 2000, 17(1):101-107.
[29] HOU P Y. Compositions at Al2O3/FeCrAl interfaces after high temperature oxidation[J]. Materials and Corrosion, 2000, 51(5):329-337.
[30] HOU P Y, MOSKITO J. Sulfur segregation to Al2O3-FeAl interfaces studied by field emission-auger electron spectroscopy[J]. Oxidation of Metals, 2003, 59(5/6):559-574.
[31] PINT B A, WALKER L R, WRIGHT I G. Characterization of the breakaway Al content in alumina-forming alloys[J]. Materials at High Temperature, 2004, 21(3):175-185.
[32] PINT B A, PORTER W D, WRIGHT I G. The effect of thermal expansion on spallation behavior of Fe-base alumina-forming alloys[J]. Materials Science Forum, 2008, 595:1083-1092.
[33] ZHU C, ZHAO X, MOLCHAN I S, et al. Effect of cooling rate and substrate thickness on spallation of alumina scale on FeCr alloy[J]. Materials Science and Engineering:A, 2011, 528(29/30):8687-8693.
[34] QUADAKKERS W J, BONGARTZ K. The prediction of breakaway oxidation for alumina forming ODS alloys using oxidation diagrams[J]. Materials and Corrosion, 1994, 45(4):232-241.
[35] GURRAPPA I, WEINBRUCH S, NAUMENKO D, et al. Factors governing breakaway oxidation of FeCrAl-based alloys[J]. Materials and Corrosion, 2000, 51(4):224-235.
[36] PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3):190-196.
[37] UNOCIC K A, YAMAMOTO Y, PINT B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy[J]. Oxidation of Metals, 2017, 87(3/4):431-441.
[38] PAN D, ZHANG R, WANG H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J]. Journal of Alloys and Compounds, 2016, 684:549-555.
[39] STOTT F H, WOOD G C, STRINGER J. The influence of alloying elements on the development and maintenance of protective scales[J]. Oxidation of Metals, 1995, 44(1/2):113-145.
[40] PINT B A, UNOCIC K A, TERRANI K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys[J]. Materials at High Temperature, 2015, 32(1/2):28-35.
[41] 柏广海,孙文儒,张晏玮,等. 核反应堆燃料包壳材料用FeCrAl合金材料:107217205[P]. 2016-10-12.
[42] TERRANI K A, PINT B A, KIM Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. Journal of Nuclear Materials, 2016, 479:36-47.
[43] ROBERTSON J. The mechanism of high temperature aqueous corrosion of stainless steels[J]. Corrosion Science, 1991, 32(4):443-465.
[44] REBAK R B, LARSEN M, KIM Y J. Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments[J]. Corrosion Review, 2017, 35(3):177-188.
[45] GUPTA V K, LARSEN M, REBAK R B. Utilizing FeCrAl oxidation resistance properties in water, air and steam for accident tolerant fuel cladding[J]. ECS Transactions, 2018, 85(2):3-12.
[46] PARK D J, KIM H G, PARK J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment[J]. Corrosion Science, 2015, 94:459-465.
[47] YAMAMOTO Y, SUN Z, PINT B A, et al. Optimized Gen-Ⅱ FeCrAl cladding production in large quantity for campaign testing[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2016.
[48] GUSSEV M N, FIELD K G, YAMAMOTO Y. The analysis of the general performance and mechanical behavior of unirradiated FeCrAl alloys before and after welding[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2016.
[49] SUN Z, YAMAMOTO Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication[J]. Materials Science and Engineering:A, 2017, 700:554-561.
[50] SUN Z, BEI H, YAMAMOTO Y. Microstructural control of FeCrAl alloys using Mo and Nb additions[J]. Materials Characterization, 2017, 132:126-131.
[51] SUN Z, EDMONDSON P D, YAMAMOTO Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys[J]. Acta Materialia, 2018, 144:716-727.
[52] FIELD K G, BRIGGS S A, SRIDHARAN K, et al. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa[J]. Journal of Nuclear Materials, 2017, 495:20-26.
[53] JIN H H, SHIN C, KWON J. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling[J]. Journal of Electron Microscopy, 2010, 59(6):463-468.
[54] FIELD K G, BRIGGS S A, EDMONDSON P, et al. Evaluation on the effect of composition on radiation hardening and embrittlement in model FeCrAl alloys[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2015.
[55] FIELD K G, BRIGGS S A, LITTRELL K, et al. Database on Performance of Neutron Irradiated FeCrAl Alloys[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2016.
[56] FIELD K G, HU X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe-Cr3Al alloys[J]. Journal of Nuclear Materials, 2015, 465:746-755.
[57] FIELD K G, LITTRELL K C, BRIGGS S A. Precipitation of α' in neutron irradiated commercial FeCrAl alloys[J]. Scripta Materialia, 2018, 142:41-45.
[58] BEDMONDSON P D, BRIGGS S A, YAMAMOTO Y, et al. Irradiation-enhanced α' precipitation in model FeCrAl alloys[J]. Scripta Materialia, 2016, 116:112-116.
[59] BRIGGS S A, EDMONDSON P D, LITTRELL K C, et al. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys[J]. Acta Materialia, 2017, 129:217-228.
[60] HALEY J C, BRIGGS S A, EDMONDSON P D, et al. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys[J]. Acta Materialia, 2017, 136:390-401.
[61] FIELD K G, BRIGGS S A, SRIDHARAN K, et al. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys[J]. Journal of Nuclear Materials, 2017, 489:118-128.
[62] FIELD K G, HU X, LITTRELL K, et al. Stability of model Fe-Cr-Al alloys under the presence of neutron radiation[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2014.
[63] AYDOGAN E, WEAVER J S, MALOY S A, et al. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations[J]. Journal of Nuclear Materials, 2018, 503:250-262.
[64] ANDEROGLU O, AYDOGAN E, MALOY S, et al. Ion irradiation testing and characterization of FeCrAl candidate alloys[R]. Los Alamos, USA:Los Alamos National Laboratory, 2014.
[65] FIELD K G, GUSSEV M N, HU X, et al. Preliminary results on FeCrAl alloys in the asreceived and welded state designed to have enhanced weldability and radiation tolerance[R]. Oak Ridge, USA:Oak Ridge National Laboratery, 2015.
[66] FIELD K G, GUSSEV M N, YAMAMOTO Y, et al. Preliminary studies on the fabrication and characterization of Fe-Cr-Al alloys designed to have enhanced weldability and radiation tolerance[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2015.
[67] FIELD K G, GUSSEV M N, HOWARD R. First annual progress report on radiation tolerance of controlled fusion welds in high temperature oxidation resistant FeCrAl alloys[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2015.
[68] FIELD K G, GUSSEV M N, YAMAMOTO Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. Journal of Nuclear Materials, 2014, 454(1):352-358.
[69] KOBAYASHI S, TAKASUGI T. Mapping of 475℃ embrittlement in ferritic Fe-Cr-Al alloys[J]. Scripta Materialia, 2010, 63(11):1104-1107.
[70] FIELD K G, GUSSEV M N, YAMAMOTO Y, et al. Second annual progress report on radiation tolerance of controlled fusion welds in high temperature oxidation resistant FeCrAl alloys[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2016.
[71] GUSSEV M N, FIELD K G, BRIGGS S A, et al. Preliminary analysis of the general performance and mechanical behavior of irradiated FeCrAl base alloys and weldments[R]. Oak Ridge, USA:Oak Ridge National Laboratory, 2016.
[72] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491:55-66.
[1] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[2] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[3] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[4] 何培, 姚伟志, 吕建明, 张向东. 聚变堆结构材料辐照性能的评价[J]. 材料工程, 2018, 46(6): 19-26.
[5] 李晓敏, 吴菊英, 唐昶宇, 袁萍, 邢涛, 张凯, 梅军, 黄渝鸿. B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究[J]. 材料工程, 2018, 46(3): 48-54.
[6] 朱文华, 岳建岭, 黄小忠, 王春齐, 胡思闽, 王畅. 电子束辐照含铍聚碳硅烷制备含铍碳化硅纤维[J]. 材料工程, 2018, 46(12): 54-60.
[7] 赵燕春, 毛瑞鹏, 袁小鹏, 许丛郁, 蒋建龙, 孙浩, 寇生中. Ti基金属玻璃复合材料的腐蚀行为[J]. 材料工程, 2018, 46(1): 25-30.
[8] 桑伟, 周岚, 冯新星, 张建春. 电子束辐照诱导丙烯酸接枝尼龙66织物的改性研究[J]. 材料工程, 2017, 45(10): 111-116.
[9] 贺建超, 高进, 邓东, 万发荣. 辐照过程中He对ODS合金中氧化物的影响[J]. 材料工程, 2016, 44(4): 89-93.
[10] 胥聪敏, 杨东平, 张灵芝, 史立强, 李辉辉. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2015, 43(6): 71-78.
[11] 朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43(2): 85-90.
[12] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
[13] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 赵天亮, 李建宽, 胡杰珍. 交流电频率对X65钢在CO32-/HCO3-溶液中腐蚀行为的影响[J]. 材料工程, 2014, 0(11): 85-89.
[14] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[15] 王旭东, 易忠, 沈自才, 顾鹏飞. ZnO白漆的质子辐照损伤与光学性能退化机理[J]. 材料工程, 2013, 0(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn