Structural optimization of PEMFC membrane electrode assembly
WANG Qian-qian1, ZHENG Jun-sheng1, PEI Feng-lai2, DAI Ning-ning1, ZHENG Jim P1,3
1. Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai 201804, China;
2. Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China;
3. Department of Electrical and Computer Engineering, Florida State University, Florida 32304, USA
Abstract:Membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cell (PEMFC), which provides the microchannels for the transfer of multiphase substances and electrochemical reaction sites. To achieve the commercialization of PEMFC, fabricating MEA with high power density, low Pt loading and good durability is needed. Inside MEA, the structures of function layers and the interfaces between layer to layer all have great impact on the performance of MEA outside of the catalyst. The MEA prepared by traditional methods (CCS method and CCM method) has many structural defects, which greatly reduces the utilization rate of Pt and the mass transfer ability. By optimizing the structure of each functional layer to eliminate defects, it will be beneficial to further improve the comprehensive performance of PEMFC. Based on the problems existing in the traditional MEA structure, literatures in recent years on the improvement of the structure of CL, PEM and GDL were combed, and the preparation methods, structure-activity relations, and advantages/disadvantages of each advanced structure were summarized. This paper will provide a guidance for the development of MEA with high performance, low cost and long service life in the future.
[1] 衣宝廉.燃料电池和燃料电池车发展历程及技术现状[M].北京:科学出版社,2018. YI B L.Development history and technology status of fuel cells and fuel cell vehicles[M].Beijing:Science Press,2018.
[2] BRITTO P J,SANTHANAM K S,RUBIOA,et al.Improved charge transfer at carbon nanotube electrodes[J].Advanced Materials,1999,11(2):154-157.
[3] HWANG S J,KIM S K,LEE J G,et al.Role of electronic perturbation in stability and activity of Pt-based alloy nanocataly-sts for oxygen reduction[J].Journal of the American Chemical Society,2012,134(48):19508-19511.
[4] NONE.Fuel cell technical team roadmap[R/OL].United States:[s.n.],2013[2018-11-01].Web.doi:10.2172/1220127.
[5] 王诚,王树博,张剑波,等.车用质子交换膜燃料电池材料部件[J].化学进展,2015,27(2/3):310-320. WANG C,WANG S B,ZHANG J B,et al.The key materials and components for proton exchange membrane fuel cell[J].Progress in Chemistry,2015,27(2/3):310-320.
[6] 黄豪.质子交换膜燃料电池膜电极耐久性研究[D].上海:华东理工大学,2018. HUANG H.Durability study of membrane electrode accembly for proton exchange membrane fuel cell[D].Shanghai:East China University of Science and Technology,2018.
[7] 汪圣龙,唐浩林,潘牧,等.膜电极结构对质子交换膜燃料电池性能的影响[J].材料导报,2003,17(10):37-40. WANG S L,TANG H L,PAN M,et al.Progress in MEA structure and its influences on PEM fuel cell[J].Materials Review,2003,17(10):37-40.
[8] JEONG G,KIM M J,HAN J,et al.High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2016,323:142-146.
[9] ZHANG C K,YU H M,LI Y K,et al.Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J].Chem Sus Chem,2013,6(4):659-666.
[10] WILSON M S,GOTTESFELD S.Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J].Journal of Applied Electrochemistry,1992,22(1):1-7.
[11] CHO D H,LEE S Y,DONG W S,et al.Swelling agent adopted decal transfer method for membrane electrode assembly fabrication[J].Journal of Power Sources,2014,258(14):272-280.
[12] PARK H S,CHO Y H,CHO Y H,et al.Modified decal method and its related study of microporous layer in PEM fuel cells[J].Journal of the Electrochemical Society,2008,155(5):B455-B460.
[13] SHAHGALDI S,ALAEFOUR I,UNSWORTH G,et al.Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(16):11813-11822.
[14] KRISHNAN N N,PRABHURAM J,HONG Y T,et al.Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC[J].International Journal of Hydrogen Energy,2010,35(11):5647-5655.
[15] HONG J C,JANG H,LIM S,et al.Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs[J].International Journal of Hydrogen Energy,2011,36(19):12465-12473.
[16] TAYLOR E J.Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells[J].Journal of the Electrochemical Society,1992,139(5):L45-L46.
[17] LAPP A S,DUAN Z,MARCELLA N,et al.Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method[J].Journal of the American Chemical Society,2018,140:6249-6259.
[18] QU N S,ZHU D,CHAN K C,et al.Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density[J].Surface & Coatings Technology,2003,168(2):123-128.
[19] ANTOINE O,DURAND R.In situ electrochemical deposition of Pt nanoparticles on carbon and inside nafion[J].Creative Education,2001,5(45):13825-13832.
[20] KIM H,POPOV B N.Development of novel method for preparation of PEMFC electrodes[J].Electrochemical and Solid-State Letters,2004,7(4):A71-A74.
[21] ADILBISH G,YU Y T.Effect of the Nafion content in the MPL on the catalytic activity of the Pt/C-Nafion electrode prepared by pulsed electrophoresis deposition[J].International Journal of Hydrogen Energy,2017,42(2):1181-1188.
[22] ADILBISH G,LEE J W,JANG Y S,et al.Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC[J].International Journal of Hydrogen Energy,2014,39(7):3381-3386.
[23] EGETENMEYER A,RADEV I,DURNEATA D,et al.Pulse electrodeposited cathode catalyst layers for PEM fuel cells[J].International Journal of Hydrogen Energy,2017,42(19):13649-13660.
[24] MILLINGTON B,WHIPPLE V,POLLET B G.A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique[J].Journal of Power Sources,2011,196(20):8500-8508.
[25] SU H,JAO T C,BARRON O,et al.Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J].Journal of Power Sources,2014,267(3):155-159.
[26] SASSIN M B,GARSANY Y,GOULD B D,et al.Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells[J].Analytical Chemistry,2016,89(1):511-518.
[27] WANG Q,EIKERLING M,SONG D,et al.Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J].Journal of the Electrochemical Society,2005,151(7):A1171-A1179.
[28] XIE Z,NAVESSIN T,SHI K,et al.Functionally graded cathode catalyst layers for polymer electrolyte fuel cells:Ⅱ.experimental study of the effect of nafion distribution batteries, fuel cells,and energy conversion[J].Journal of the Electrochemical Society,2005,152(6):A1171-A1179.
[29] WANG Q,EIKERLING M,SONG D,et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J].Journal of the Electrochemical Society,2005,151(7):A1171-A1179.
[30] TAYLOR A D,KIM E Y,HUMES V P,et al.Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells[J].Journal of Power Sources,2007,171(1):101-106.
[31] MATSUDA H,FUSHINOBU K,OHMA A,et al.Structural effect of cathode catalyst layer on the performance of PEFC[J].Journal of Thermal Science & Technology,2011,6(6):154-163.
[32] SU H N,LIAO S J,WU Y N.Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design[J].Journal of Power Sources,2010,195(11):3477-3480.
[33] YE L,GAO Y,ZHU S,et al.A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J].International Journal of Hydrogen Energy,2017,42(10):7241-7245.
[34] ZHU S,ZHENG J,HUANG J,et al.Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells[J].Journal of Power Sources,2018,393:19-31.
[35] MIDDELMAN E.Improved PEM fuel cell electrodes by controlled self-assembly[J].Fuel Cells Bulletin,2002,2002(11):9-12.
[36] DEBE M K.Nanostructured thin film electrocatalysts for PEM fuel cells-a tutorial on the fundamental characteristics and practical properties of NSTF catalysts[J].Ecs Transactions,2012,45(2):47-68.
[37] 3M Company.Final report-high performance,durable,low cost membrane electrode assemblies for transportation applications[EB/OL] [2018-11-01].https://www.osti.gov/servlets/purl/1360747.
[38] CULLEN D A,LOPEZHARO M,BAYLEGUILLEMAUD P,et al.Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts[J].Journal of Materials Chemistry A,2015,3(21):11660-11667.
[39] LV H,WANG J,YAN Z,et al.Carbon-supported Pt-Co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells[J].Fuel Cells,2017,17(5):635-642.
[40] GALBIATI S,MORIN A,PAUC N.Nanotubes array electrodes by Pt evaporation:half-cell characterization and PEM fuel cell demonstration[J].Applied Catalysis B Environmental,2015,165(2):149-157.
[41] KIM O H,CHO Y H,KANG S H,et al.Ordered microporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure[J].Nature Communications,2013,4:2473.
[42] MURATA S,IMANISHI M,HASEGAWA S,et al.Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J].Journal of Power Sources,2014,253(5):104-113.
[43] XIA Z,WANG S,JIANG L,et al.Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix[J].Scientific Reports,2015,5(5):16100.
[44] TOWNE S,VISWANATHAN V,HOLBERY J,et al.Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology[J].Journal of Power Sources,2007,171(2):575-584.
[45] SILBERNER J.Performance characteristics of PEFCs with patterned electrodes prepared by piezo-electric printing[J].Ecs Transactions,2013,50(2):423-427.
[46] SHUKLA S,DOMICAN K,KARAN K,et al.Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing[J].Electrochemical Acta,2015,156:289-300.
[47] LEE D H,JO W,YUK S,et al.In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells[J].Acs Applied Materials & Interfaces,2018,10(5):4682-4688.
[48] KOH J K,JEON Y,YONG I C,et al.A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J].Journal of Materials Chemistry A,2014,2(23):8652-8659.
[49] JANG S,KIM M,YUN S K,et al.Facile multiscale patterning by creep-assisted sequential imprinting and fuel cell application[J].ACS Appl Mater Interfaces,2016,8(18):11459-11465.
[50] SANG M K,YUN S K,AHN C,et al.Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J].Journal of Power Sources,2016,317:19-24.
[51] CHOI W C,JU D K,WOO S I.Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell[J].Journal of Power Sources,2001,96(2):411-414.
[52] DANG Q K,HENKENSMEIER D,KRISHNAN N N,et al.Nafion membranes with a porous surface[J].Journal of Membrane Science,2014,460:199-205.
[53] JOSEPH D,BUSSELMANN J,HARMS C,et al.Porous Nafion membranes[J].Journal of Membrane Science,2016,520:723-730.
[54] BREITWIESER M,MORONI R,SCHOCK J,et al.Water management in novel direct membrane deposition fuel cells under low humidification[J].International Journal of Hydrogen Energy,2016,41(26):11412-11417.
[55] VIERRATH S,BREITWIESER M,KLINGELE M,et al.The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J].Journal of Power Sources,2016,326:170-175.
[56] BAYER T,PHAM H C,SASAKI K,et al.Spray deposition of Nafion membranes:electrode-supported fuel cells[J].Journal of Power Sources,2016,327:319-326.
[57] HUANG Y X,CHENG C H,WANG X D,et al.Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells[J].Energy,2010,35(12):4786-4794.
[58] VIJAY R,SESHADRI S K,HARIDOSS P.Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells[J].Transactions of the Indian Institute of Metals,2011,64(1/2):175-179.
[59] KONG I M,CHOI J W,KIM S I,et al.Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J].Applied Energy,2015,145:345-353.