Please wait a minute...
材料工程  2019, Vol. 47 Issue (4): 1-14    DOI: 10.11868/j.issn.1001-4381.2018.001176
  综述 本期目录 | 过刊浏览 | 高级检索 |
王倩倩1, 郑俊生1, 裴冯来2, 戴宁宁1, 郑剑平1,3
1. 同济大学 汽车学院 新能源汽车工程中心, 上海 201804;
2. 上海机车检测认证技术研究中心有限公司, 上海 201805;
3. 佛罗里达州立大学 电气与计算机工程系, 美国 佛罗里达 32304
Structural optimization of PEMFC membrane electrode assembly
WANG Qian-qian1, ZHENG Jun-sheng1, PEI Feng-lai2, DAI Ning-ning1, ZHENG Jim P1,3
1. Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai 201804, China;
2. Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China;
3. Department of Electrical and Computer Engineering, Florida State University, Florida 32304, USA
全文: PDF(17991 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 膜电极(membrane electrode assembly,MEA)是质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的核心部件,为PEMFC提供了多相物质传递的微通道和电化学反应场所。为了实现燃料电池商业化目标,需要制备高功率密度、低Pt载量、耐久性好的MEA。在MEA中除了催化剂以外,各功能层结构、层与层之间的界面都对MEA的性能具有重要影响。传统方法(CCS法和CCM法)制备的MEA在结构上有很多缺陷,明显制约了Pt的利用率和系统传质能力。通过优化各功能层结构消除缺陷,将有利于进一步提升PEMFC综合性能。本文从传统MEA结构存在的问题出发,梳理了近年来关于催化层、质子交换膜和气体扩散层结构优化方面的文献,归纳总结了各先进结构的制备方法、构效关系以及优缺点,对未来高性能、低成本和长寿命的MEA的开发具有指导意义。
E-mail Alert
关键词 质子交换膜燃料电池膜电极制备结构优化膜电极性能    
Abstract:Membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cell (PEMFC), which provides the microchannels for the transfer of multiphase substances and electrochemical reaction sites. To achieve the commercialization of PEMFC, fabricating MEA with high power density, low Pt loading and good durability is needed. Inside MEA, the structures of function layers and the interfaces between layer to layer all have great impact on the performance of MEA outside of the catalyst. The MEA prepared by traditional methods (CCS method and CCM method) has many structural defects, which greatly reduces the utilization rate of Pt and the mass transfer ability. By optimizing the structure of each functional layer to eliminate defects, it will be beneficial to further improve the comprehensive performance of PEMFC. Based on the problems existing in the traditional MEA structure, literatures in recent years on the improvement of the structure of CL, PEM and GDL were combed, and the preparation methods, structure-activity relations, and advantages/disadvantages of each advanced structure were summarized. This paper will provide a guidance for the development of MEA with high performance, low cost and long service life in the future.
Key wordsproton exchange membrane fuel cell    MEA fabrication    structure optimization    MEA prop-erty
收稿日期: 2018-10-08      出版日期: 2019-04-19
中图分类号:  O646.54  
通讯作者: 郑俊生(1979-),男,副研究员,博士,研究方向为车用新能源,联系地址:上海市嘉定区曹安公路4800号同济大学(201804),     E-mail:
王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
WANG Qian-qian, ZHENG Jun-sheng, PEI Feng-lai, DAI Ning-ning, ZHENG Jim P. Structural optimization of PEMFC membrane electrode assembly. Journal of Materials Engineering, 2019, 47(4): 1-14.
链接本文:      或
[1] 衣宝廉.燃料电池和燃料电池车发展历程及技术现状[M].北京:科学出版社,2018. YI B L.Development history and technology status of fuel cells and fuel cell vehicles[M].Beijing:Science Press,2018.
[2] BRITTO P J,SANTHANAM K S,RUBIOA,et al.Improved charge transfer at carbon nanotube electrodes[J].Advanced Materials,1999,11(2):154-157.
[3] HWANG S J,KIM S K,LEE J G,et al.Role of electronic perturbation in stability and activity of Pt-based alloy nanocataly-sts for oxygen reduction[J].Journal of the American Chemical Society,2012,134(48):19508-19511.
[4] NONE.Fuel cell technical team roadmap[R/OL].United States:[s.n.],2013[2018-11-01].Web.doi:10.2172/1220127.
[5] 王诚,王树博,张剑波,等.车用质子交换膜燃料电池材料部件[J].化学进展,2015,27(2/3):310-320. WANG C,WANG S B,ZHANG J B,et al.The key materials and components for proton exchange membrane fuel cell[J].Progress in Chemistry,2015,27(2/3):310-320.
[6] 黄豪.质子交换膜燃料电池膜电极耐久性研究[D].上海:华东理工大学,2018. HUANG H.Durability study of membrane electrode accembly for proton exchange membrane fuel cell[D].Shanghai:East China University of Science and Technology,2018.
[7] 汪圣龙,唐浩林,潘牧,等.膜电极结构对质子交换膜燃料电池性能的影响[J].材料导报,2003,17(10):37-40. WANG S L,TANG H L,PAN M,et al.Progress in MEA structure and its influences on PEM fuel cell[J].Materials Review,2003,17(10):37-40.
[8] JEONG G,KIM M J,HAN J,et al.High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2016,323:142-146.
[9] ZHANG C K,YU H M,LI Y K,et al.Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J].Chem Sus Chem,2013,6(4):659-666.
[10] WILSON M S,GOTTESFELD S.Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J].Journal of Applied Electrochemistry,1992,22(1):1-7.
[11] CHO D H,LEE S Y,DONG W S,et al.Swelling agent adopted decal transfer method for membrane electrode assembly fabrication[J].Journal of Power Sources,2014,258(14):272-280.
[12] PARK H S,CHO Y H,CHO Y H,et al.Modified decal method and its related study of microporous layer in PEM fuel cells[J].Journal of the Electrochemical Society,2008,155(5):B455-B460.
[13] SHAHGALDI S,ALAEFOUR I,UNSWORTH G,et al.Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(16):11813-11822.
[14] KRISHNAN N N,PRABHURAM J,HONG Y T,et al.Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC[J].International Journal of Hydrogen Energy,2010,35(11):5647-5655.
[15] HONG J C,JANG H,LIM S,et al.Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs[J].International Journal of Hydrogen Energy,2011,36(19):12465-12473.
[16] TAYLOR E J.Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells[J].Journal of the Electrochemical Society,1992,139(5):L45-L46.
[17] LAPP A S,DUAN Z,MARCELLA N,et al.Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method[J].Journal of the American Chemical Society,2018,140:6249-6259.
[18] QU N S,ZHU D,CHAN K C,et al.Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density[J].Surface & Coatings Technology,2003,168(2):123-128.
[19] ANTOINE O,DURAND R.In situ electrochemical deposition of Pt nanoparticles on carbon and inside nafion[J].Creative Education,2001,5(45):13825-13832.
[20] KIM H,POPOV B N.Development of novel method for preparation of PEMFC electrodes[J].Electrochemical and Solid-State Letters,2004,7(4):A71-A74.
[21] ADILBISH G,YU Y T.Effect of the Nafion content in the MPL on the catalytic activity of the Pt/C-Nafion electrode prepared by pulsed electrophoresis deposition[J].International Journal of Hydrogen Energy,2017,42(2):1181-1188.
[22] ADILBISH G,LEE J W,JANG Y S,et al.Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC[J].International Journal of Hydrogen Energy,2014,39(7):3381-3386.
[23] EGETENMEYER A,RADEV I,DURNEATA D,et al.Pulse electrodeposited cathode catalyst layers for PEM fuel cells[J].International Journal of Hydrogen Energy,2017,42(19):13649-13660.
[24] MILLINGTON B,WHIPPLE V,POLLET B G.A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique[J].Journal of Power Sources,2011,196(20):8500-8508.
[25] SU H,JAO T C,BARRON O,et al.Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J].Journal of Power Sources,2014,267(3):155-159.
[26] SASSIN M B,GARSANY Y,GOULD B D,et al.Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells[J].Analytical Chemistry,2016,89(1):511-518.
[27] WANG Q,EIKERLING M,SONG D,et al.Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J].Journal of the Electrochemical Society,2005,151(7):A1171-A1179.
[28] XIE Z,NAVESSIN T,SHI K,et al.Functionally graded cathode catalyst layers for polymer electrolyte fuel cells:Ⅱ.experimental study of the effect of nafion distribution batteries, fuel cells,and energy conversion[J].Journal of the Electrochemical Society,2005,152(6):A1171-A1179.
[29] WANG Q,EIKERLING M,SONG D,et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J].Journal of the Electrochemical Society,2005,151(7):A1171-A1179.
[30] TAYLOR A D,KIM E Y,HUMES V P,et al.Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells[J].Journal of Power Sources,2007,171(1):101-106.
[31] MATSUDA H,FUSHINOBU K,OHMA A,et al.Structural effect of cathode catalyst layer on the performance of PEFC[J].Journal of Thermal Science & Technology,2011,6(6):154-163.
[32] SU H N,LIAO S J,WU Y N.Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design[J].Journal of Power Sources,2010,195(11):3477-3480.
[33] YE L,GAO Y,ZHU S,et al.A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J].International Journal of Hydrogen Energy,2017,42(10):7241-7245.
[34] ZHU S,ZHENG J,HUANG J,et al.Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells[J].Journal of Power Sources,2018,393:19-31.
[35] MIDDELMAN E.Improved PEM fuel cell electrodes by controlled self-assembly[J].Fuel Cells Bulletin,2002,2002(11):9-12.
[36] DEBE M K.Nanostructured thin film electrocatalysts for PEM fuel cells-a tutorial on the fundamental characteristics and practical properties of NSTF catalysts[J].Ecs Transactions,2012,45(2):47-68.
[37] 3M Company.Final report-high performance,durable,low cost membrane electrode assemblies for transportation applications[EB/OL] [2018-11-01].
[38] CULLEN D A,LOPEZHARO M,BAYLEGUILLEMAUD P,et al.Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts[J].Journal of Materials Chemistry A,2015,3(21):11660-11667.
[39] LV H,WANG J,YAN Z,et al.Carbon-supported Pt-Co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells[J].Fuel Cells,2017,17(5):635-642.
[40] GALBIATI S,MORIN A,PAUC N.Nanotubes array electrodes by Pt evaporation:half-cell characterization and PEM fuel cell demonstration[J].Applied Catalysis B Environmental,2015,165(2):149-157.
[41] KIM O H,CHO Y H,KANG S H,et al.Ordered microporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure[J].Nature Communications,2013,4:2473.
[42] MURATA S,IMANISHI M,HASEGAWA S,et al.Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J].Journal of Power Sources,2014,253(5):104-113.
[43] XIA Z,WANG S,JIANG L,et al.Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix[J].Scientific Reports,2015,5(5):16100.
[44] TOWNE S,VISWANATHAN V,HOLBERY J,et al.Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology[J].Journal of Power Sources,2007,171(2):575-584.
[45] SILBERNER J.Performance characteristics of PEFCs with patterned electrodes prepared by piezo-electric printing[J].Ecs Transactions,2013,50(2):423-427.
[46] SHUKLA S,DOMICAN K,KARAN K,et al.Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing[J].Electrochemical Acta,2015,156:289-300.
[47] LEE D H,JO W,YUK S,et al.In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells[J].Acs Applied Materials & Interfaces,2018,10(5):4682-4688.
[48] KOH J K,JEON Y,YONG I C,et al.A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J].Journal of Materials Chemistry A,2014,2(23):8652-8659.
[49] JANG S,KIM M,YUN S K,et al.Facile multiscale patterning by creep-assisted sequential imprinting and fuel cell application[J].ACS Appl Mater Interfaces,2016,8(18):11459-11465.
[50] SANG M K,YUN S K,AHN C,et al.Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J].Journal of Power Sources,2016,317:19-24.
[51] CHOI W C,JU D K,WOO S I.Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell[J].Journal of Power Sources,2001,96(2):411-414.
[52] DANG Q K,HENKENSMEIER D,KRISHNAN N N,et al.Nafion membranes with a porous surface[J].Journal of Membrane Science,2014,460:199-205.
[53] JOSEPH D,BUSSELMANN J,HARMS C,et al.Porous Nafion membranes[J].Journal of Membrane Science,2016,520:723-730.
[54] BREITWIESER M,MORONI R,SCHOCK J,et al.Water management in novel direct membrane deposition fuel cells under low humidification[J].International Journal of Hydrogen Energy,2016,41(26):11412-11417.
[55] VIERRATH S,BREITWIESER M,KLINGELE M,et al.The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J].Journal of Power Sources,2016,326:170-175.
[56] BAYER T,PHAM H C,SASAKI K,et al.Spray deposition of Nafion membranes:electrode-supported fuel cells[J].Journal of Power Sources,2016,327:319-326.
[57] HUANG Y X,CHENG C H,WANG X D,et al.Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells[J].Energy,2010,35(12):4786-4794.
[58] VIJAY R,SESHADRI S K,HARIDOSS P.Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells[J].Transactions of the Indian Institute of Metals,2011,64(1/2):175-179.
[59] KONG I M,CHOI J W,KIM S I,et al.Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J].Applied Energy,2015,145:345-353.
[1] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[2] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[3] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持