Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 28-32    DOI: 10.11868/j.issn.1001-4381.2018.001190
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析
王伟国, 王新福, 汪聃, 郝刚领
延安大学 物理与电子信息学院, 陕西 延安 716000
Investigation on electrical performance of Sr, Mg, co-doped Na0.5Bi0.5TiO3 oxide ion conductor
WANG Wei-guo, WANG Xin-fu, WANG Dan, HAO Gang-ling
College of Physics and Electronic Information, Yan'an University, Yan'an 716000, Shaanxi, China
全文: PDF(1460 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过固相反应法制备单一结构的锶镁共掺的Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97氧离子导体,利用交流阻抗谱和内耗温度谱分别研究锶镁共掺对Na0.5Bi0.5TiO3材料晶粒电导率及氧离子扩散的影响。在593K时,Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97材料的晶粒电导率可以达到5.31×10-4S/cm,比母体Na0.5Bi0.5TiO3材料在同温度下的晶粒电导率高一个数量级,甚至超过了Na0.5Bi0.5Ti0.98Mg0.02O2.98样品在673K温度下的晶粒电导率。在锶镁共掺的Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97材料中观察到一个氧弛豫内耗峰,其弛豫参数为:E=0.85eV,τ0=7.4×10-14s。结合弛豫参数和结构分析,Sr2+的掺杂在一定程度上可以增大氧离子扩散的自由体积,较大的自由体积、较高的可动氧空位浓度和较好的氧空位可动性是NBT-SrMg2样品晶粒电导率相较于NBT-Mg2样品大幅提高的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟国
王新福
汪聃
郝刚领
关键词 氧离子导体晶粒电导率氧空位能动性    
Abstract:Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97 compound was synthesized by solid-state reaction. AC impedance and internal friction spectroscopy were employed to study the electrical performance and oxgyen ion diffusion in the Sr,Mg-co-doped Na0.5Bi0.5TiO3 compounds. The grain conductivity of Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97 sample can reach 5.31×10-4 S/cm at 593 K, an order of magnitude higher than that of the Na0.5Bi0.5TiO3 compound at the same temperature and exceeding the grain conductivity of Na0.5Bi0.5Ti0.98Mg0.02O2.98 sample at 673K. An internal friction relaxation peak was observed. The relaxation parameters can be calculated, E=0.85eV and τ0=7.4×10-14s. Judging from the relaxation parameters and structural analysis, the Sr2+ dopant can amplify the specific free volume. Compared with the Na0.5Bi0.5Ti0.98Mg0.02O2.98 sample, the substantial increase of the grain conductivity for Na0.5Bi0.48Sr0.02Ti0.98Mg0.02O2.97 sample may be derived from the larger specific free volume, higher mobile oxygen vacancy content and better oxygen vacancy mobility.
Key wordsoxide ionic conductor    grain conductivity    oxygen vacancy mobility
收稿日期: 2018-10-12      出版日期: 2019-08-22
中图分类号:  TM911  
通讯作者: 王伟国(1981-),男,博士,副教授,研究方向:固体电解质和高阻尼复合材料,联系地址:陕西省延安市宝塔区杨家岭延安大学物理与电子信息学院(716000),E-mail:wwgyadx@126.com     E-mail: wwgyadx@126.com
引用本文:   
王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
WANG Wei-guo, WANG Xin-fu, WANG Dan, HAO Gang-ling. Investigation on electrical performance of Sr, Mg, co-doped Na0.5Bi0.5TiO3 oxide ion conductor. Journal of Materials Engineering, 2019, 47(8): 28-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001190      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/28
[1] LAKKI A, HERZOG R, WELLER M, et al. Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8mol% Y2O3 polycrystals[J]. J Eru Ceram Soc, 2000, 20(30):285-296.
[2] VERKERK M J, BURGGRAAF A J. Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics[J]. Solid State Ionics, 1982,6(2):159-170.
[3] BALDERRAMA A C, RODRIGUEZ H A M, GEORGE G R. Enhanced ionic transport and compressive residual stress in Er-doped Bi2O3 with lower Er3+ Concentrations[J]. Journal of electronic materials, 2018, 47(9):5422-5432.
[4] 朱美安,王洪涛,韩燕,等.新型氧离子导体La2Mo2O9的研究进展[J].化工新型材料,2017,45(3):25-27. ZHU M A, WANG H T, HAN Y, et al, Research progress of a new type of oxide-ion conductor La2Mo2O9[J]. New Chemical Materials, 2017, 45(3):25-27.
[5] 吴闪,朱延俊,赵梦媛,等.Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程,2018, 46(5):133-138. WU S, ZHU Y J, ZHAO M Y, et al, Effects of Co-doping on electrical behaviors of CeO2-based solid electrolyte[J]. Journal of Materials Engineering, 2018, 46(5):133-138.
[6] LI M, PIETROWSKI M J, DE SOUZA R A, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3[J]. Nature Mater, 2014, 13(1):31-35.
[7] YANG F, WU P, SINCLAIR D C. Enhanced bulk conductivity of A-site divalent acceptor-doped non-stoichiometric sodium bismuth titanate[J]. Solid State Ionics, 2017, 299:38-45.
[8] WANG W G, LI X Y, LIU T. Mechanical and impedance spectroscopy studies on the fast oxide ion conductor Na0.5Bi0.5Ti0.94Mg0.06O2.94[J]. J Mater Sci:Mater Electron, 2017, 28(20):15263-15269.
[9] WANG W G, LI X Y, LIU T, et al. Study on the electrical conductivity and enhanced factors of the oxide-ion conductors Na0.5Bi0.5Ti1-xMgxO3-x[J]. Bulletin of Materials Science, 2018, in press.
[10] WANG X P, FANG Q F. Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9[J]. Phys Rev B, 2002, 65(6):064304.
[11] 袁立曦,方前锋. 内耗数据的非线性拟合及其在纯铝竹节晶界弛豫中的应用[J]. 金属学报,1998,34(10):1016-1020. YUAN L X, FANG Q F. Nonlinear fitting of the internal friction data and its application on the bamboo grain boundary relaxation in pure Al[J]. Acta Metallurgica Sinica, 1998,34(10):1016-1020.
[12] YAO Y Y, SONG C H, BAO P, et al, Doping effect on the dielectric property in bismuth titanate[J]. J Appl Phys, 2004,95(6):3126-3130.
[13] WANG X P, FANG Q F. Low frequency internal friction study of oxide-ion conductor La2Mo2O9[J]. Phys Condensed Matt,2001,13(8):1641-1651.
[14] WANG W G, LI X Y, LIU T, et al. Low frequency internal friction study on the ferroelectric perovskite Na0.5Bi0.5TiO3[J].AIP Advances, 2015, 5(10):107125.
[15] NOWICK A S, BERRY B S. Anelastic relaxation in crystalline solids[M].New York:Academic, 1972.
[1] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[2] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[3] 辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏. 液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能[J]. 材料工程, 2018, 46(11): 63-70.
[4] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[5] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
[6] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[7] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
[8] 朱承飞, 洪永飞, 薛金花, 黄攀, 吉光辉. 甘氨酸-硝酸盐燃烧法制备Beta-Al2O3固体电解质研究[J]. 材料工程, 2016, 44(8): 23-28.
[9] 王桂兰, 熊凡, 芮道满, 张海鸥. 固/液相等离子喷涂制备固体氧化物燃料电池复合电极[J]. 材料工程, 2011, 0(7): 6-9.
[10] 刘长久, 吴华斌, 李延伟, 陈世娟. La(III)与Sr(II)复合掺杂非晶态氢氧化镍电化学性能研究[J]. 材料工程, 2008, 0(10): 68-71,75.
[11] 邓梅根. 超级电容器用纳米MnO2的阴离子还原剂制备研究[J]. 材料工程, 2008, 0(10): 95-97.
[12] 杨春巍, 胡信国, 张亮, 戴长松. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, 0(7): 79-82,87.
[13] 祁洪飞, 梁广川, 李国禄, 梁金生, 孟军平. 均匀化退火对铝合金阳极活化性能的影响[J]. 材料工程, 2005, 0(10): 27-30.
[14] 邓梅根, 杨邦朝, 胡永达. 纳米NiO的制备及其赝电容特性研究[J]. 材料工程, 2005, 0(5): 19-21,26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn