Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 70-76    DOI: 10.11868/j.issn.1001-4381.2018.001225
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变
丰涵1, 王宝顺2, 吴晓涵1, 王曼2, 佴启亮2, 宋志刚1
1. 钢铁研究总院 特殊钢研究所, 北京 100081;
2. 浙江久立特材科技股份有限公司 特材研究院, 浙江 湖州 313028
Microstructure evolution of 022Cr25Ni7Mo4N duplex stainless steel during isothermal treatment
FENG Han1, WANG Bao-shun2, WU Xiao-han1, WANG Man2, NAI Qi-liang2, SONG Zhi-gang1
1. Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China;
2. Special Materials Research Institute, Zhejiang Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313028, Zhejiang, China
全文: PDF(4258 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 研究经1100℃等温处理2~20 h后022Cr25Ni7Mo4N双相不锈钢的显微组织演变。观察钢中奥氏体晶粒形态变化并对其尺寸进行定量表征,测量铁素体/奥氏体两相中的元素含量变化,并探讨组织演变对实验钢中铁素体相体积分数的各向异性和低温冲击韧性的影响。结果表明:随着保温时间的延长,奥氏体晶粒发生聚集、长大、粗化现象,并伴随显著的晶粒形态变化,a/b值≥ 4.0时细长棒状晶粒体积分数从近20%骤降至5%以下,a/b值介于1.0~1.9的等轴晶粒体积分数显著上升的同时,尺寸≥ 20 μm的晶粒体积分数快速增加。保温时间的延长使得Mo,Cr元素进一步向铁素体相扩散、富集,并提高铁素体相抗点蚀当量(pitting resistance equivalent number,PREN)值。细长棒状奥氏体晶粒比例的显著下降,是奥氏体体积分数各向异性改善和实验钢低温冲击韧性提高的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丰涵
王宝顺
吴晓涵
王曼
佴启亮
宋志刚
关键词 双相不锈钢等温处理晶粒形态各向异性冲击韧性    
Abstract:The microstructure evolution of 022Cr25Ni7Mo4N duplex stainless steel after isothermal treatment for 2-20 h at 1100℃ was studied. The morphology evolution of austenite grain was observed and the grain size was quantitatively characterized. The change of element content in austenite and ferrite phase was measured. The effect of microstructure evolution on the anisotropy of volume fraction of ferrite phase and low temperature impact toughness of test steels was analysed subsequently. The results show that with the increase of holding time, there is obvious accumulation, growth and coarsening of austenite grain, accompanied by significant changes in grain morphology. The volume fraction of rod-like crystal grains with a/b value above 4.0 dropped from nearly 20% to below 5%, and that of equiaxed grains with a/b value between 1.0 and 1.9 increases significantly, while the number of grains with size above 20 μm increases rapidly. The prolongation of the holding time makes molybdenum and chromium elements diffuse and enrich to the ferrite phase further, which leads to the increase of pitting resistance equivalent number (PREN) value in ferrite phase. The significant decrease in the volume fraction of slender rod-like austenite crystallites is the primary reason for the improvement in anisotropy of austenite volume fraction and the increase of low temperature impact toughness of test steel.
Key wordsduplex stainless steel    isothermal treatment    grain morphology    anisotropy    impact toug-hness
收稿日期: 2018-10-17      出版日期: 2020-01-09
中图分类号:  TG142.2  
基金资助: 
通讯作者: 丰涵(1983-),男,高级工程师,博士研究生,主要从事不锈钢及耐蚀合金研发工作,联系地址:北京市海淀区学院南路76号钢铁研究总院南院特殊钢研究所(100081),E-mail:fenghan@nercast.com     E-mail: fenghan@nercast.com
引用本文:   
丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
FENG Han, WANG Bao-shun, WU Xiao-han, WANG Man, NAI Qi-liang, SONG Zhi-gang. Microstructure evolution of 022Cr25Ni7Mo4N duplex stainless steel during isothermal treatment. Journal of Materials Engineering, 2020, 48(1): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001225      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/70
[1] HAGHDADI N,CIZEK P,HODGSON P D,et al.Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel[J].Acta Materialia,2018,145:196-209.
[2] SUN Y H,ZHAO Y,LI X B,et al.Effects of heating and cooling rates on δ↔γ phase transformations in duplex stainless steel by in situ observation[J].Ironmaking & Steelmaking,2019,46(3):277-284.
[3] 吴玖.双相不锈钢[M].北京:冶金工业出版社,1999:22-24. WU J.Duplex stainless steel[M].Beijing:Metallurgical Industry Press,1999:22-24.
[4] KANG D H,LEE H W.Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds[J].Corrosion Science,2013,74(4):396-407.
[5] 吴忠忠,宋志刚,郑文杰,等.固溶温度对00Cr25Ni7Mo4N超级双相不锈钢显微组织及耐点蚀性能的影响[J].金属热处理,2007,32(8):50-54. WU Z Z,SONG Z G,ZHENG W J,et al.Effect of solution temperature on microstructure and pitting corrosion resistance property of super duplex stainless steel 00Cr25Ni7Mo4N[J].Heat Treatment of Metals,2007,32(8):50-54.
[6] MISHRA M K,BALASUNDAR I,RAO A G,et al.On the high temperature deformation behavior of 2507 super duplex stainless steel[J].Journal of Materials Engineering and Performance,2017,26(2):802-812.
[7] MA M,DING H,MISRA R D K,et al.A study on precipitation kinetics of sigma phase in a hot-rolled super duplex stainless steel during isothermal aging based on the Johnson-Mehl-Avrami model[J].Ironmaking & Steelmaking,2017,44(4):311-318.
[8] ZHANG B,JIANG Z,LI H,et al.Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature[J].Materials Characterization,2017,129:31-39.
[9] PETTERSSON N,WESSMAN S,HERTZMAN S,et al.High-temperature phase equilibria of duplex stainless steels assessed with a novel in-situ neutron scattering approach[J].Metallurgical and Materials Transactions A,2017,48(4):1562-1571.
[10] WARREN A D,HARNIMAN R L,GUO Z,et al.Quantification of sigma-phase evolution in thermally aged 2205 duplex stainless steel[J].Journal of Materials Science,2016,51(2):694-707.
[11] 白于良,杨银辉,曹建春,等.Mn对22%Cr双相不锈钢700℃时效σ相及韧性的影响[J].材料工程,2017,45(5):71-79. BAI Y L,YANG Y H,CAO J C,et al.Effect of Mn on σ phase and toughness of 22%Cr duplex stainless steel by aging treatment at 700℃[J].Journal of Materials Engineering,2017,45(5):71-79.
[12] 宋志刚,王宝顺,丰涵,等.S32750双相不锈钢冲击韧性影响因素探讨[C]//第六届中国国际双相不锈钢大会论文集.北京:中国特钢企业协会,2018:1-7. SONG Z G,WANG B S,FENG H,et al.Discussion about influencing factors on impact toughness of duplex stainless steels[C]//6th China International Duplex Stainless Steel Conference.Beijing:CSSC,2018:1-7.
[13] WANG S,ZHANG M,WU H,et al.Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel[J].Materials Characterization,2016,118:92-101.
[14] LEE T H,SUH H Y,HAN S K.Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes[J].Journal of Nuclear Materials,2016,479:85-92.
[15] 韩大尉,孙文儒,于连旭,等.Mo含量对IN718合金组织和力学性能的影响[J].航空材料学报,2018,38(4):64-74. HAN D W,SUN W R,YU L X,et al.Effect of Mo content on microstructure and mechanical properties of IN718 alloy[J].Journal of Aeronautical Materials,2018,38(4):64-74.
[16] MAKI T,FURUHARA T,TSUZAKI K.Microstructure development by thermomechanical processing in duplex stainless steel[J].ISIJ International,2001,41(6):571-579.
[17] 王佳,马勤,张红霞,等.σ相的析出对双相不锈钢晶粒的影响[J].热加工工艺,2009,38(18):41-43. WANG J,MA Q,ZHANG H X,et al.Influence of sigma phase precipitate on grain size of duplex stainless steel[J].Hot Working Technology,2009,38(18):41-43.
[18] 丰涵,宋志刚,郑文杰,等.一种双相不锈钢的侵蚀剂以及侵蚀方法:CN201810237545.2[P].2018-08-21. FENG H,SONG Z G,ZHENG W J,et al.An erosion agent and erosion method for duplex stainless steel:CN201810237545.2[P].2018-08-21.
[19] 徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004:11-25. XU Z,ZHAO L C.Principle of metal solid phase transition[M].Beijing:Science Press,2004:11-25.
[20] AHMED M Z,BHATTACHARJEE P P.Microstructure,texture,and tensile properties of a severely warm-rolled and annealed duplex stainless steel[J]. Steel Research International,2016,87(4):472-483.
[21] 许婷,方晓英,朱言利,等.双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J].材料工程,2018,46(2):34-40. XU T,FANG X Y,ZHU Y L,et al.Grain orientation and interface character distribution during austenite precipitation phase in duplex stainless steel[J].Journal of Materials Engineering,2018,46(2):34-40.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[3] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[4] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[5] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[6] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[9] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[10] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
[11] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[12] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[13] 王永强, 李娜, 杨滨, 孙立, 林苏华. 核电管道不锈钢中σ相的退火消除及脆性恢复[J]. 材料工程, 2016, 44(5): 29-36.
[14] 钟振前, 田志凌, 杨春. 马氏体不锈钢的微观组织各向异性对微区应力和氢分布的影响[J]. 材料工程, 2016, 44(10): 80-87.
[15] 张艳, 李倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能[J]. 材料工程, 2016, 44(1): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn