Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (3): 127-133    DOI: 10.11868/j.issn.1001-4381.2018.001238
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究
孙志强(), 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴
航天特种材料及工艺技术研究所, 北京 100074
Preparation of alumina microcrystalline ceramics by nano-Al2O3 spheres and mass transfer kinetics research
Zhi-qiang SUN(), Jian ZHANG, Xiao-bo YANG, Hua-dong WANG, Yao HAN, Yi LYU, Shu-qin LI
Aerospace Institute of Advanced Materials & Processing Technology, Beijing 100074, China
全文: PDF(2843 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用球形纳米氧化铝颗粒制备氧化铝微晶陶瓷,研究造粒、烧结等工艺过程对陶瓷微观结构和力学性能的影响,并结合动力学计算分析球形颗粒在烧结过程中的传质特性。结果表明:通过液相造粒掺入0.8%(质量分数)的PVA能够优化球形颗粒的压制成型并提高坯体密度。烧结温度从1400℃提高至1550℃,陶瓷相对致密度由74.1%增大至97.5%,而晶粒尺寸由0.6 μm仅增至1.4 μm,这与球形颗粒自身稳定的形态及其堆积形成的均匀孔隙有关。在1550℃下烧结时间由30 min延长至120 min时,气孔率由4.8%降低至0.4%,晶粒尺寸则由1.2 μm增至2.7 μm。另外,通过动力学计算得出球形颗粒的烧结活化能为788 kJ/mol,证实球形颗粒在烧结前期和中期具有生长惰性,利于获得微晶结构。经1550℃保温90 min的陶瓷,其密度达到98.9%,平均晶粒尺寸仅为1.6 μm,硬度达到26.4 GPa,弯曲强度为574 MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙志强
张剑
杨小波
王华栋
韩耀
吕毅
李淑琴
关键词 氧化铝陶瓷微晶结构球形颗粒传质    
Abstract

The spherical and dense alumina nanoparticles were used to prepare alumina microcrystalline ceramics. The effect of granulation and sintering parameters on the microstructure and mechanical properties of the ceramics was studied. The results show that fine green body can be obtained with the addition of 0.8% (mass fraction) PVA, and the density of green body can also be improved. With the increase of sintering temperature from 1400℃ to 1550℃, the density is increased from 74.1% to 97.5%, while the grain size of the ceramics is only increased gradually from 0.6 μm to 1.4 μm owing to the stable spherical shape and the uniformly packed pores. With the increase of holding time from 30 min to 120 min at 1550℃, the porosity is decreased from 4.8% to 0.4%, and the grain size is then increased from 1.2 μm to 2.7 μm. Besides, the sintering activation energy of the employed spheres is 788 kJ/mol, which proves that the particles are inactive during earlier and medium stage of sintering, and the spheres are benefit to obtain microcrystalline ceramics. The ceramic sintered at 1550℃ for 90 min has a density of 98.9%, an average grain size of 1.6 μm, a hardness of 26.4 GPa and a bending strength of 574 MPa.

Key wordsalumina ceramics    microcrystalline structure    spherical particle    mass transfer
收稿日期: 2018-10-21      出版日期: 2020-03-18
中图分类号:  TB321  
基金资助:国家自然科学基金项目(51802298)
通讯作者: 孙志强     E-mail: sunzhiqiang1203@126.com
作者简介: 孙志强(1989-), 男, 工程师, 博士, 研究方向:功能陶瓷, 联系地址:北京市丰台区云冈北区40号, 航天特种材料及工艺技术研究所(100074), E-mail:sunzhiqiang1203@126.com
引用本文:   
孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
Zhi-qiang SUN, Jian ZHANG, Xiao-bo YANG, Hua-dong WANG, Yao HAN, Yi LYU, Shu-qin LI. Preparation of alumina microcrystalline ceramics by nano-Al2O3 spheres and mass transfer kinetics research. Journal of Materials Engineering, 2020, 48(3): 127-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001238      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/127
Fig.1  氧化铝颗粒的SEM照片(a)和1300 ℃处理前后颗粒的XRD谱图(b)
Fig.2  造粒方式对陶瓷坯体的影响  (a)未造粒;(b)手工造粒;(c)液相造粒
Fig.3  烧结温度对陶瓷致密度的影响
Fig.4  烧结温度对陶瓷微观形貌的影响  (a)1400 ℃;(b)1450 ℃;(c)1500 ℃;(d)1550 ℃
Fig.5  1550 ℃烧结不同时间获得陶瓷的微观形貌  (a)30 min;(b)60 min;(c)90 min;(d)120 min
Temperature/℃ Time/min Grain size/nm
1400 0 450
30 580
60 640
90 660
120 670
1450 0 650
30 870
60 930
90 1060
120 1180
1500 0 850
30 1010
60 1120
90 1200
120 1240
Table 1  烧结温度和时间对晶粒尺寸的影响
T/℃ R2
n=2 n=3 n=4
1400 0.94806 0.97206 0.99022
1450 0.99795 0.99434 0.95502
1500 0.98438 0.97741 0.97505
Table 2  生长级数n与线性回归参数R2的关系
Fig.6  晶粒粒径与烧结时间的关系
Fig.7  晶粒生长活化能计算
Fig.8  烧结温度(a)和烧结时间(b)对陶瓷硬度的影响
Fig.9  烧结温度(a)和保温时间(b)对陶瓷弯曲强度的影响
1 LIU L , HOU Z , ZHANG B . A new heating route of spark plasma sintering and its effect on alumina ceramic densification[J]. Materials Science and Engineering:A, 2013, 559 (3): 462- 466.
2 亢静锐, 董桂霞, 吕易楠, 等. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46 (8): 78- 83.
2 KANG J R , DONG G X , LYU Y N , et al. Influences of Eu2O3 doping amount and sintering temperature on properties of Al2O3-based microwave ceramic materials[J]. Journal of Materials Engineering, 2018, 46 (8): 78- 83.
3 CHINELATTO A S A , CHINELATTO A L , OJAIMI C L , et al. Effect of sintering curves on the microstructure of alumina-zirconia nanocomposites[J]. Ceramics International, 2014, 40 (9): 14669- 14676.
4 王刚, 娄海琴, 周继伟, 等. 自增韧氧化铝陶瓷的制备与力学性能研究[J]. 稀有金属材料与工程, 2008, 37 (1): 512- 514.
4 WANG G , LOU H Q , ZHOU J W , et al. Preparation and mechanical properties of self-toughening alumina ceramics[J]. Rare Metal Materials and Engineering, 2008, 37 (1): 512- 514.
5 KOO J B , HONG K J , PARK J S , et al. Effect of grain size on transmittance and mechanical strength of sintered alumina[J]. Materials Science and Engineering:A, 2004, 374 (1): 191- 195.
6 KRELL A , BLANK P . The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina[J]. Journal of the European Ceramic Society, 1996, 16 (11): 1189- 1200.
7 CHAKRAVARTY D , CHOKSHI A H . Direct characterizing of densification mechanisms during spark plasma sintering[J]. Journal of the American Ceramic Society, 2014, 97 (3): 765- 771.
8 ECHEBERRIA J , TARAZONA J , HE J Y , et al. Sinter-HIP of a alumina powders with sub-micron grain sizes[J]. Journal of the European Ceramic Society, 2002, 22 (11): 1801- 1809.
9 DENG Z Y , FUKASAWA T , ANDO M , et al. High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3[J]. Journal of the American Ceramic Society, 2010, 84 (3): 485- 491.
10 朱丽慧, 刘伟, 李太昌, 等. 片状氧化铝晶种加入量对氧化铝陶瓷组织和性能的影响[J]. 材料工程, 2007, 25 (12): 44- 47.
10 ZHU L H , LIU W , LI T C , et al. Effect of plate-like alumina seed amount on microstructure and properties of alumina ceramics[J]. Journal of Materials Engineering, 2007, 25 (12): 44- 47.
11 王利, 周国红, 徐初阳, 等. 国产氧化铝粉体的改性及其烧结性能研究[J]. 中国材料进展, 2011, 30 (1): 41- 45.
11 WANG L , ZHOU G H , XU C Y , et al. Modification and sintering properties of domestic alumina powder[J]. Materials China, 2011, 30 (1): 41- 45.
12 HAHN H . Microstrucutre and properties of nanostructured oxides[J]. Nanostructured Materials, 1993, 2 (3): 251- 265.
13 WANG H T , FANG Z Z , HWANG K S . Kinetics of initial coarsening during sintering of nanosized powders[J]. Metallurgical and Materials Transactions A, 2011, 42 (11): 3534- 3542.
14 RUNYAN J L , BENNISON S J . Fabrication of flaw-tolerant aluminum-titanate-reinforced alumina[J]. Journal of the European Ceramic Society, 1991, 7 (2): 93- 99.
15 KISSINGER H E . Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29 (11): 1702- 1706.
16 SATO E , CARRY C . Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained α-alumina[J]. Journal of the European Ceramic Society, 1995, 15 (1): 9- 16.
17 JOHNSON D L , CUTTLER I B . Diffusion sintering:Ⅰ Initial stage sintering models and their application to shrinkage of powder compacts[J]. Journal of the American Ceramic Society, 1963, 46 (11): 541- 545.
18 SHIAU F S , FANG T T , LEU T H . Effects of milling and particle size distribution on the sintering behavior and the evolution of the microstructure in sintering powder compacts[J]. Materials Chemistry and Physics, 1998, 57 (1): 33- 40.
19 SANTANACH J G , WEIBEL A , ESTOUME`S C , et al. Spark plasma sintering of alumina:study of parameters, formal sintering analysis and hypotheses on the mechanism involved in densification and grain growth[J]. Acta Materialia, 2011, 59 (4): 1400- 1408.
[1] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[2] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[3] 王扬卫, 马壮, 于晓东, 王富耻, 胡欣. 几种典型材料的动态硬度研究[J]. 材料工程, 2010, 0(9): 62-65,70.
[4] 李卓然, 樊建新, 冯吉才. 氧化铝陶瓷与低碳钢钎焊接头的界面反应[J]. 材料工程, 2008, 0(9): 1-4.
[5] 张景德, 尹衍升, 张虹, 李静. Fe3Al-Al2O3陶瓷梯度涂层性能研究[J]. 材料工程, 2003, 0(4): 6-9.
[6] 韩朝晖, 赵子强, 杜庆立. 嵌埋团簇Ge:CaF2膜光学性质的研究[J]. 材料工程, 2000, 0(9): 19-20,24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn