Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 19-31    DOI: 10.11868/j.issn.1001-4381.2018.001239
  增材制造与再制造专栏 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管复合材料的3D打印技术研究进展
鲁浩1, 李楠2, 王海波2, 廖帮全1, 姜亚明2, 荆妙蕾2, 徐志伟2, 陈莉2, 张兴祥2
1. 天津工业大学 物理科学与技术学院, 天津 300387;
2. 天津工业大学 纺织学院 先进纺织复合材料教育部重点实验室, 天津 300387
Research progress in 3D printing technology for carbon nanotubes composites
LU Hao1, LI Nan2, WANG Hai-bo2, LIAO Bang-quan1, JIANG Ya-ming2, JING Miao-lei2, XU Zhi-wei2, CHEN Li2, ZHANG Xing-xiang2
1. School of Physical Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China;
2. Key Laboratory of Advanced Braided Composites, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(2266 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 3D打印技术是一项根据计算机模型设计快速加工和制造复杂几何形状组件的增材制造技术之一。其基于三维数据模型,通过电脑控制将材料进行逐层累积,最终将三维模型变成立体实物。相比于传统制造方法,3D打印技术具有节约工时、易操作、不需要模具、组件几何形状可控性强等优势。随着该技术的发展,依据打印技术成型的核心、材料以及设备等产生了熔融沉积塑型、选择性激光烧结成型、光固化立体成型/数字光处理成型、溶剂浇铸成型等若干类型的3D打印技术。本文重点介绍其中最具代表性的4种3D打印成型工艺的原理和特点,基于碳纳米管增强聚合物复合材料,综述近年来不同3D打印成型工艺的研究进展,同时预测3D打印成型工艺在该领域会向着高精度、产业化、大众化和高集成度的方向发展,3D打印材料的研发也会更具前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁浩
李楠
王海波
廖帮全
姜亚明
荆妙蕾
徐志伟
陈莉
张兴祥
关键词 3D打印碳纳米管聚合物复合材料电气性能力学性能    
Abstract:3D printing technology is one of the additive manufacturing technologies for rapid process and manufacture of complex geometric components. Based on the three-dimensional data model, the material is accumulated layer by layer controlled by computer, and eventually forms the solid object. Compared to the traditional manufacturing methods, 3D printing technology has many advantages, such as time saving, low cost, easy operation, no mold and strong controllability of component geometry, etc. Along with the development of this technology, several types of 3D printing technologies, such as fused deposition modeling, selective laser sintering, stereo lithography, digital light processing and solvent casting molding, have been produced according to the core of the printing technology, applicable materials and equipment composition. The principles and characteristics of the four most representative 3D printing forming processes were introduced in this paper, and the research progress of carbon nanotubes to reinforce polymer composites with different types of 3D printing forming processes applied in recent years was summarized. At the same time, it was predicted that the 3D printing molding technology will be developed towards the direction of high precision, industrialization, popularization and high integration in this field, and the research and development of 3D printing materials will also have more prospects.
Key words3D printing    carbon nanotubes    polymer composites    electrical property    mechanical property
收稿日期: 2018-10-19      出版日期: 2019-11-21
中图分类号:  TB34  
基金资助: 
通讯作者: 廖帮全(1971-),男,正高级工程师,博士,研究方向为光纤传感、材料电磁特性分析,联系地址:天津工业大学宾水西道399号天津工业大学理学院(300387),E-mail:liaobangquan@163.com     E-mail: liaobangquan@163.com;xuzhiwei@tjpu.edu.cn
引用本文:   
鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
LU Hao, LI Nan, WANG Hai-bo, LIAO Bang-quan, JIANG Ya-ming, JING Miao-lei, XU Zhi-wei, CHEN Li, ZHANG Xing-xiang. Research progress in 3D printing technology for carbon nanotubes composites. Journal of Materials Engineering, 2019, 47(11): 19-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001239      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/19
[1] 何亚飞,矫维成,杨帆,等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料,2011(2):7-13. HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites,2011(2):7-13.
[2] 诸爱士,郑传祥,成忠. 复合材料基体固化成型工艺综述[J]. 浙江科技学院学报,2008, 20(4):269-273. ZHU A S, ZHENG C X, CHENG Z. Review of matrix solidif-ication and forming processes of composite materials[J]. Journal of Zhejiang University of Science and Technology, 2008, 20(4):269-273.
[3] 张明煜,郑世勋,张丽琴,等. 复合材料基体固化成型工艺研究[J]. 西部皮革,2016(2):9. ZHANG M Y, ZHENG S X, ZHANG L Q, et al. Study on curing and forming technology of composite matrix[J]. West Leather, 2016(2):9.
[4] 杨其,李光宪. 聚合物及其复合材料的微成型加工研究进展[J]. 高分子通报, 2013(9):107-115. YANG Q, LI G X. Advances in microforming of polymers and their composites[J]. Polymer Bulletin,2013(9):107-115.
[5] 于天淼,高华兵,王宝铭,等. 碳纤维增强热塑性复合材料成型工艺的研究进展[J]. 工程塑料应用,2018,46(4):139-144. YU T M, GAO H B, WANG B M, et al. Research progress of molding process of carbon fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2018,46(4):139-144.
[6] CHRIST J S,ALIHEIDARI N,AMELI A,et al.3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermopla-stic polyurethane nanocomposites[J].Materials & Design,2017,131:394-401.
[7] CAMPBELL T A,IVANOVA O S. 3D printing of multifunctional nanocomposites[J].Nano Today,2013,8(2):119-120.
[8] 杜宇雷,孙菲菲,原光孙,等.3D打印材料的发展现状[J].徐州工程学院学报(自然科学版),2014,29(1):20-24. DU Y L,SUN F F,YUAN G S,et al.Development status of 3D printing materials[J].Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2014,29(1):20-24.
[9] GNANASEKARAN K,HEIJMANS T,BENNEKOM S V,et al.3D printing of CNT- and graphene-based conductive polymer nan-ocomposites by fused deposition modeling[J].Applied Materials Today,2017,9:21-28.
[10] TAYEBI L,UI Z,YE H,et al.3D-printed thick structured gelatin membrane for engineering of heterogeneous tissues[J].Materials Letters,2018,217:39-43.
[11] KROLL E,ARTZI D.Enhancing aerospace engineering students' learning with 3D printing wind-tunnel models[J].Rapid Prototyping Journal,2011,17(5):393-402.
[12] FU K,YAO Y,DAI J,et al.Progress in 3D printing of carbon materials for energy-related applications[J].Adv Mater,2017,29(9):1603486.
[13] LOPES A J,ERIC M,RYAN B W.Integrating stereo lithogr-aphy and direct print technologies for 3D structural electronics fabrication[J].Rapid Prototyping Journal,2012,18(2):129-143.
[14] WITTBRODT B,LAURETO J,TYMRAK B,et al.Distributed manufacturing with 3-D printing:a case study of recreational vehicle solar photovoltaic mounting systems[J/OL].Journal of Frugal Innovation,2015,1(1):doi 10.1186/s40669-014-0001-z.
[15] LLEWELLYN-JONES T,ALLEN R,TRASK R.Curved layer fused filament fabrication using automated toolpath generation[J].3D Printing and Additive Manufacturing,2016,3(4):236-243.
[16] 李梦倩,王成成,包玉衡,等.3D打印复合材料的研究进展[J].高分子通报,2016(10):41-46. LI M Q,WANG C C,BAO Y H,et al.Research progress of 3D printing composites[J].Polymer Bulletin,2016(10):41-46:
[17] 王强华,孙阿良.3D打印技术在复合材料制造中的应用和发展[J].玻璃钢,2015(4):9-14. WANG Q H,SUN A L.Application and development of 3D printing technology in composite material manufacturing[J].Fiber Reinforced Plastics,2015(4):9-14.
[18] 王成成,李梦倩,雷文,等.3D打印用聚乳酸及其复合材料的研究进展[J].塑料科技,2016(6):89-91. WANG C C,LI M Q,LEI W,et al.Research progress on 3D printing polylactic acid and its composites[J].Plastic Science and Technology,2016(6):89-91.
[19] FARAHANI R D,DUBE M,THERRIAULT D,Three-dimen-sional printing of multifunctional nanocomposites:manufacturing techniques and applications[J].Adv Mater,2016,28(28):5794-5821.
[20] RANEY J R,COMPTON B G,MUELLER J.Rotational 3D pri-nting of damage-tolerant composites with programmable mechanics[J].Proc Natl Acad Sci USA,2018,115(6):1198-1203.
[21] SAMANI M K,KHOSRAVIAN N,SHAKERZADEH M,et al.Thermal conductivity of individual multiwalled carbon nanotubes[J].International Journal of Thermal Sciences,2012,62:40-43.
[22] SCHLAGENHAUF L,NUESCH F,WANG J.Release of carbon nanotubes from polymer nanocomposites[J].Fibers,2014,2:108-127.
[23] HU Z,HUANG Y D,WANG F,et al.Synthesis of novel single-walled carbon nanotubes/poly (p-phenylene benzobisoxazole)nanocomposite[J].Polymer Bulletin,2011,67(9):1731-1739.
[24] WANG P H,GHOSHAL S,GULGUNJE P,et al.Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes[J].Polymer,2016,100:244-258.
[25] ZHANG Y,SONG K,MENG J,et al.Tailoring polyacrylonitrile interfacial morphological structure by crystallization in the presence of single-wall carbon nanotubes[J].ACS Appl Mater Interfaces,2013,5(3):807-814.
[26] DOWNES R D,HAO A,PARK J G,et al.Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes[J],Carbon,2015,93:953-966.
[27] 林天津,朱燕娟,张伟,等.多壁碳纳米管的CVD法制备[J].广东工业大学学报,2007,24(4):1-5. LIN T J,ZHU Y J,ZHANG W,et al.CVD preparation method of multiwalled carbon nanotubes[J]. Journal of Guangdong University of Technology,2007,24(4):1-5.
[28] ZHENG N,HUANG Y D,LIU H Y,et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J].Composites Science and Technology,2017,140:8-15.
[29] 常保和,解思深,李文治,等.用电弧放电法大面积地制备离散的碳纳米管[J].中国科学(A辑),1998,28:151-156. CHANG B H,XIE S S,LI W Z,et al.Preparation of discrete carbon nanotubes in abundance by arc discharge[J].Science in China (Series A),1998,28:151-156.
[30] 赵建国,史建华,邢宝岩,等.以生物质为催化剂化学气相沉积制备碳纳米管[J].新型炭材料,2012,27(3):175-180. ZHAO J G,SHI J H,XING B Y,et al.Preparation of carbon nanotubes by chemical vapor deposition using biomass as catalyst[J].New Carbon Materials,2012,27(3):175-180.
[31] 王必本,王万录,刘高斌,等.定向生长碳纳米管的研究进展[J].重庆大学学报(自然科学版),2002,25(8):134-136. WANG B B,WANG W L,LIU G B,et al.Research progress of oriented growth of carbon nanotubes[J].Journal of Chongqing University (Natural Science Edition),2002,25(8):134-136.
[32] 周小康,周明,吴春霞,等.定向生长碳纳米管阵列的制备及其应用研究进展[J].材料导报,2007,21:95-98. ZHOU X K,ZHOU M,WU C X,et al.Progress in preparation and applications of aligned carbon nanotubes arrays[J].Materials Review,2007,21:95-98.
[33] 周鹏,苏言杰,赵江,等.低压空气中直流电弧法制备单壁碳纳米管[J].功能材料与器件学报,2012,18(3):192-196. ZHOU P,SU Y J,ZHAO J,et al.Synthesis of single-walled carbon nanotubes in reduced air atmosphere by DC arc discharge[J].Journal of Functional Materials and Devices,2012,18(3):192-196.
[34] 黄瑶,李里,修姝,等.二次电弧放电法调控单壁碳纳米管的直径分布[J].黑龙江大学自然科学学报,2015,32(5):641-644. HUANG Y,LI L,XIU S,et al.Adjusting the diameter distr-ibution of single-walled carbon nanotubes by secondary arc discharge[J].Journal of Natural Science of Heilongjiang University, 2015,32(5):641-644.
[35] YANG W,CHU W,JIANG C,et al.Cerium oxide promoted Ni/MgO catalyst for the synthesis of multi-walled carbon nanotubes[J].Chinese Journal of Catalysis,2011,32(6/8):1323-1328.
[36] 唐通鸣,张政,邓佳文,等.基于FDM的3D打印技术研究现状与发展趋势[J],化工新型材料,2015,43(6):228-230. TANG T M,ZHANG Z,DENG J W,et al.Research status and trend of 3D printing technology based on FDM[J].New Chemical Materials,2015,43(6):228-230.
[37] 龚运息.基于SLA和FDM的3D打印发动机风扇工艺与性能分析[J].工艺与检测,2015(11):111-115. GONG U X.Performance analysis and process of 3D printing engine fan based on the SLA and FDM[J].Technology and Test,2015(11):111-115.
[38] 李新,孙良双,杨亮,等.FDM 3D打印高分子材料改性及应用进展[J].胶体与聚合物,2017,35(3):139-141. LI X,SUN L S,YANG L,et al.Modification and application of FDM 3D printing polymer materials[J].Chinese Journal of Colloid & Polymer,2017,35(3):139-141.
[39] DUL S,FAMBRI L,PEGORETTI A.Filaments production and fused deposition modelling of ABS/carbon nanotubes composites[J].Nanomaterials (Basel),2018,8(1):49.
[40] DORIGATO A,MORETTI V,DUL S,et al.Electrically cond-uctive nanocomposites for fused deposition modelling[J].Synthetic Metals,2017,226:7-14.
[41] TSIAKATOURAS G,TSELLOU E,STERGIOU C.Compara-tive study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts[J].World Transactions on Engineering and Technology Education,2014,12:392-296.
[42] THOMAS D J.Developing nanocomposite 3D printing filaments for enhanced integrated device fabrication[J].The International Journal of Advanced Manufacturing Technology,2018,95(9/12):4191-4198.
[43] SCHMITZ D P,ECCO L G,DUL S,et al.Electromagnetic interf-erence shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling[J].Materials Today Communications,2018,15:70-80.
[44] PRASHANTHA K, ROGER F. Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling[J]. Journal of Macromolecular Science:Part A, 2017, 54(1):24-29.
[45] ZHANG D, CHI B H, LI B W. et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Syn-thetic Metals, 2016,217:79-86.
[46] 田小永,刘腾飞,杨春成,等.高性能纤维增强树脂基复合材料3D打印及其应用探索[J].航空制造技术,2016(15):26-31. TIAN X Y,LIU T F,YANG C C,et al.3D printing of high performance fiber reinforced resin matrix composites and its application exploration[J].Aeronautical Manufacturing Techn-ology,2016(15):26-31.
[47] RAHMAN M H,YUSOF M S,OSMAN S A,et al.Feasibility study:Investigation of polymer nano-composites (PNC) material for biomedical application via fused deposition modelling (FDM) routes[J].Applied Mechanics and Materials,2015,773/774:267-271.
[48] CHUNG M,RADACSI N,ROBERT C,et al.On the optimiz-ation of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry[J/OL].3D Print Med,2018,4(1):doi 10.1186/s41205-017-0023-2.
[49] MU Q,WANG L,DUNN C K,et al.Digital light processing 3D printing of conductive complex structures[J].Additive Manufacturing,2017,18:74-83.
[50] 王利,李自良,王靖,等.熔融沉积成型过程喷头的传热模拟及实验研究[J].机械与电子,2016,34(1):27-30. WANG L,LI Z L,WANG J,et al.Numerical simulation and experimental study on heat transfer of nozzle in Fused Deposition Molding process[J].Machinery & Electronics,2016,34(1):27-30.
[51] 蒲以松,王宝奇,张连贵.金属3D打印技术的研究[J].表面技术,2018,47(3):78-83. PU Y S,WANG B Q,ZHANG L G.Research on metal 3D printing technology[J].Surface Technology,2018,47(3):78-83.
[52] YUAN S,ZHENG Y,CHUA C K,et al.Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering[J].Composites:Part A,2018,105:203-213.
[53] 张正义,陈英红,戚方伟,等.固相剪切碾磨制备尼龙12/多壁碳纳米管复合粉体及选择性激光烧结3D打印[J].高分子材料科学与工程,2017,33(3):122-127. ZHANG Z Y,CEHN Y H,QI F W,et al.Preparation of nylon 12/MWNT composite powder by solid-state shear milling and selective laser sintering 3D printing[J].Polymer Materials Science and Engineering,2017,33(3):122-127.
[54] 史玉升,闫春泽,魏青松,等.选择性激光烧结3D打印用高分子复合材料[J].中国科学:信息科学,2015,45(2):204-211. SHI Y S,YAN C Z,WEI Q S,et al.Polymer composites for selective laser sintering 3D printing[J].Science China:Infor-mation Science,2015,45(2):204-211.
[55] 吴琼,陈惠,巫静,等.选择性激光烧结用原材料的研究进展[J].材料导报,2015,29(26):78-83. WU Q,CEHN H,WU J,et al.Research development of the material used for selective laser sintering[J].Materials Review,2015,29(26):78-83.
[56] 李志超,甘鑫鹏,费国霞,等.选择性激光烧结3D打印聚合物及其复合材料的研究进展[J].高分子材料科学与工程,2017,33(10):170-174. LI Z C,GAN X P,FEI G X,et al.Advances in the study of selective laser sintering of 3D printed polymers and their comp-osites[J].Polymer Materials Science and Engineering,2017,33(10):170-174.
[57] LI Z,WANG Z,GAN X,et al.Selective laser sintering 3D prin-ting:a way to construct 3D electrically conductive segregated network in polymer matrix[J].Macromolecular Materials and Engineering,2017,302(11):1700211.
[58] QI F,CHEN N,WANG Q.Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites[J].Materials & Design,2018,143:72-80.
[59] ZHANG Y,FANG J,LI J,et al.The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering[J].Polymers,2017,9(12):728.
[60] SHA J W, LI Y L, SALVATIERRA R V, et al. Three-dime-nsional printed graphene foams[J]. ACS Nano, 2017, 11(7):6860-6867.
[61] SASKA S,PIRES L C,COMINOTTE M A,et al.Three-dim-ensional printing and in vitro evaluation of poly(3-hydroxy-butyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2018,89:265-273.
[62] SHIRAZI S F,GHAREHKHANI S,MEHRALI M,et al.A rev-iew on powder-based additive manufacturing for tissue engin-eering:selective laser sintering and inkjet 3D printing[J].Sci Technol Adv Mater,2015,16(3):033502.
[63] 张超,马文茂.DLP光固化3D打印关键技术研究[J].航空科学技术,2018,29(4):47-51. ZHANG C,MA W M.Research on key technologies of DLP photocuring 3D printing[J].Aeronautical Science & Technolo-gy,2018,29(4):47-51.
[64] 闫梦霞,陈晓婷,康婷,等.适用于光固化3D打印的光敏树脂的研究进展[J].浙江化工,2018,49(2):8-11. YAN M X,CHEN X T,KANG T,et al.Research progress of photosensitive resin for photocurable 3D printing[J].Zhejiang Chemical Industry,2018,49(2):8-11.
[65] ENG H,MALEKSAEEDI S,YU S,et al.Development of CNTs-filled photopolymer for projection stereolithography[J].Rapid Prototyping Journal,2017,23(1):129-136.
[66] SANDOVAL J H,SOTO K F,MURR L E,et al.Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nano-tubes for stereolithography layered manufacturing[J].Journal of Materials Science,2006,42(1):156-165.
[67] LIN D,JIN S,ZHANG F,et al.3D stereolithography printing of graphene oxide reinforced complex architectures[J].Nanotec-hnology,2015,26(43):434003.
[68] LEE S J,ZHU W,NOWICKI M,et al.3D printing nano conduc-tive multi-walled carbon nanotube scaffolds for nerve regen-eration[J].J Neural Eng,2018,15(1):016018.
[69] 王广春,袁圆,刘东旭.光固化快速成型技术的应用及其进展[J].航空制造技术,2011(6):26-29. WANG G C,YUAN Y,LIU D X.Application and progress of SLA rapid prototyping technology[J].Aeronautical Manu-facturing technology,2011(6):26-29.
[70] GUO S Z,HEUZEY M C,THERRIAULT D.Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures[J].Langmuir,2014,30(4):1142-1150.
[71] GUO S Z,GOSSELIN F,GUERIN N,et al.Solvent-cast three-dimensional printing of multifunctional microsystems[J].Small,2013,9(24):4118-4122.
[72] POSTIGLIONE G,NATALE G,GRIFFINI G,et al.Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling[J].Composites:Part A,2015,76:110-114.
[73] CHIZARI K,DAOUD M A,RAVINDRAN A R,et al.3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors[J].Small,2016,12(44):6076-6082.
[74] LEIGH S J,BRADLEY R J,PURSSELL C P,et al.A simple,low-cost conductive composite material for 3D printing of electronic sensors[J].Plos One,2012,7(11):49365.
[75] CZYZEWSKI J,BURZYNSKI P,GAWET K,et al.Rapid prototyping of electrically conductive components using 3D printing technology[J].Journal of Materials Processing Tech-nology,2009,209(12/13):5281-5285.
[76] CHIZARI K,ARJMAND M,LIU Z,et al.Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications[J].Materials Today Communications,2017,11:112-118.
[77] KIM H,OHNSON J,CHAVEZ L A,et al.Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition mod-eling 3D printing[J].Ceramics International,2018(44):9037-9044.
[78] LAMBERTI P,SPINELLI G,KUZHIR P P,et al.Evaluation of thermal and electrical conductivity of carbon-based PLA nano-composites for 3D printing[C]//9th International Conference on "Times of Polymers and Composites". NY:AIP Publishing and AIP Member Societies,2018:020158.
[79] GONZALEZ G,CHIAPPONE A,ROPPOLO I,et al.Devel-opment of 3D printable formulations containing CNT with enhanced electrical properties[J].Polymer,2017,109:246-253.
[80] MA J H, WANG P, DONG L, et al. Highly conductive, mech-anically strong graphene monolith assembled by three-dimen-sional printing of large graphene oxide[J]. Journal of Colloid and Interface Science,2019,534:12-19.
[81] DUL S, FAMBRI L, PEGORETTI A. Fused deposition mode-lling with ABS-graphene nanocomposites[J]. Composites:Part A, 2016,85:181-191.
[82] SHOFNER M L, LOZANO K, BARRERA E V, et al. Nanofiber-reinforced polymers prepared by fused deposition modeling[J]. Journal of Applied Polymer Science, 2003, 89:3081-3090.
[83] WENG Z X, WANG J L, SENTHIL T, et al. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing[J]. Materials and Design, 2016,102:276-283.
[84] 许婧,邢悦,郝思嘉,等.石墨烯/聚合物基复合材料3D打印成型研究进展[J].材料工程,2018,46(7):1-11. XU J, XING Y, HAO S J,et al. Research progress in graphene/polymer processing using 3D printing technology[J]. Journal of Materials Engineering, 2018,46(7):1-11.
[85] DUAN B, WANG M, ZHOU W Y, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J]. Acta Biomaterialia, 2010,6:4495-4505.
[86] CHUNG H, DAS S. Functionally graded nylon-11/silica nano-composites produced by selective laser sintering. Materials Scie-nce and Engineering A, 2008,487:251-257.
[87] SALMORIA G V, PAGGI R A, LAGO A, et al. Microstr-uctural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering[J]. Polymer Testing, 2011,30:611-615.
[88] MANAPAT J Z, MANGADLAO J D, TIU B D B. et al. High-strength stereolithographic 3D printed nanocomposites:grap-hene oxide metastability[J]. ACS Appl Mater Interfaces, 2017,9:10085-10093.
[89] ZHOU X, CASTRO N J, ZHU W, et al. Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation[J]. Scientific Reports, 2016,6:32876.
[90] DÍEZ-PASCUAL A M, NAFFAKH M, MARCO C, et al. High-performance nanocomposites based on polyetherketones[J]. Progress in Materials Science, 2012,57:1106-1190.
[91] GUO S Z, YANG X L, HEUZEY M C, et al. 3D printing of a multifunctional nanocomposite helical liquid sensor[J]. Nano-scale, 2015,7:6451-6456.
[92] GUO S Z, GOSSELIN F, GUERIN N, et al. Solvent-Cast Three-Dimensional Printing of Multifunctional Microsystems[J]. Small, 2013, 9(24):4118-4122.
[93] GUO S Z, HEUZEY M C, THERRIAULT D. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructure[J]. Langmuir, 2014,30:1142-1150.
[94] 王亚男,王芳辉,汪中明,等. 4D打印的研究进展及应用展望[J]. 航空材料学报,2018,38(2):70-76. WANG Y N, WANG F H, WANG Z M, et al. Research progress and application prospect of 4D printing[J]. Journal of Aeronautical Materials, 2018,38(2):70-76.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[8] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[13] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[14] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[15] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn