Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 61-71    DOI: 10.11868/j.issn.1001-4381.2018.001254
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响
温冬辉1,2, 吕阳1,2, 李震3, 王清1,2, 唐睿4, 董闯1,2
1. 大连理工大学 材料科学与工程学院, 辽宁 大连 116024;
2. 大连理工大学 三束材料改性教育部重点实验室, 辽宁 大连 116024;
3. 大连理工大学 机械工程学院, 辽宁 大连 116024;
4. 中国核动力研究设计院 反应堆燃料及材料重点实验室, 成都 610213
Effect of Nb/Ti/Zr/W on precipitation behavior and mechanical property of 310S austenitic stainless steels
WEN Dong-hui1,2, LYU Yang1,2, LI Zhen3, WANG Qing1,2, TANG Rui4, DONG Chuang1,2
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
2. Key laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China;
3. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
4. Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
全文: PDF(19859 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了提高310S不锈钢的高温组织稳定性,本工作系统研究了微量合金化元素(Nb,Ti,Zr和W)对310S析出相行为和力学性能的影响。设计的系列合金经过1423K热轧、1423K/0.5h固溶、1173K/0.5h稳定化处理,最后进行973K/408h时效处理。研究结果表明:W可有效提高合金的高温组织稳定性,而过量Mo元素的添加会加速Cr23C6向σ转变;添加Ti和Zr可细化基体晶粒,但Ti会促使时效过程中大量脆性相的析出,严重降低合金的高温组织稳定性,从而恶化合金力学性能。Fe-25Cr-22Ni-0.73Mo-0.35Nb-0.046C(质量分数/%)合金展现出优异的高温组织稳定性和力学性能(σYS=237MPa,σUTS=545MPa,δ=39%),有望作为超临界水冷堆核燃料包壳的候选材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温冬辉
吕阳
李震
王清
唐睿
董闯
关键词 燃料包壳奥氏体不锈钢310S微合金化相析出行为力学性能    
Abstract:In order to improve the high-temperature (HT) microstructural stability of 310S-type austenitic stainless steels (ASSs), the effects of minor-alloying elements (Nb, Ti, Zr, and W) on the precipitation behaviors and mechanical properties of 310S ASSs were systematically investigated. The designed alloy ingots were hot-rolled at 1423K, solid-solutioned at 1423K for 0.5h, stabilized at 1173K for 0.5h, and then aged at 973K for different hours. The microstructure and precipitated phases at different heat-treatment states were characterized by XRD, OM, SEM-EDS and TEM, respectively. It is found that the addition of Ti or Zr can refine the matrix grains remarkably, but Ti can deteriorate the HT microstructure stability of alloy sharply, i.e., a large amount of coarse Cr23C6 and σ particles are precipitated both on GBs and in the matrix after long-term aging. In addition, the impurity of Si should be controlled strictly for the inhibition of G-Ni16Si7Zr6 phase precipitation in Zr-containing ASSs. Mo accelerates the phase transformation of Cr23C6 to (during aging, while W plays an active contribution to the HT microstructure stability. The designed Fe-25Cr-22Ni-0.73Mo-0.35Nb-0.046C (mass fraction/%) alloy exhibits excellent mechanical properties (σYS=237MPa,σUTS=545MPa, δ=39%) due to its higher microstructural stability at 973K, which is expected to be applied as fuel claddings.
Key wordsfuel cladding    austenitic stainless steels    310S    minor-alloying    precipitation behavior    mech-anical property
收稿日期: 2018-10-24      出版日期: 2019-09-18
中图分类号:  TG113  
通讯作者: 李震(1975-),E-mail:lizhen@dlut.edu.cn;王清(1977-),E-mail:wangq@dlut.edu.cn     E-mail: lizhen@dlut.edu.cn;wangq@dlut.edu.cn
引用本文:   
温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
WEN Dong-hui, LYU Yang, LI Zhen, WANG Qing, TANG Rui, DONG Chuang. Effect of Nb/Ti/Zr/W on precipitation behavior and mechanical property of 310S austenitic stainless steels. Journal of Materials Engineering, 2019, 47(9): 61-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001254      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/61
[1] BAINDUR S. Materials challenges for the supercritical water-cooled reactor (SCWR)[J]. Bulletin of the Canadian Nuclear Society, 2008, 29(1):32-38.
[2] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8):1943-1962.
[3] SUN C, HUI R, QU W, et al. Progress in corrosion resistant materials for supercritical water reactors[J]. Corrosion Science, 2009, 51(11):2508-2523.
[4] WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1/3):176-201.
[5] ZHANG Q, TANG R, YIN K, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9):2092-2097.
[6] 邓平,彭群家,韩恩厚,等. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12):1588-1602. DENG P, PENG Q J, HAN E H, et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel[J]. Acta Metallurgica Sinica, 2017, 53(12):1588-1602.
[7] JIN S, GUO L, LUO F, et al. Ion irradiation-induced preci-pitation of Cr23C6 at dislocation loops in austenitic steel[J]. Scripta Materialia, 2013, 68(2):138-141.
[8] ZINKLE S J, WAS G. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3):735-758.
[9] 王永强,杨滨,李娜,等. σ相在核电一回路主管道不锈钢中的脆化机理[J]. 金属学报, 2016, 52(1):17-24. WANG Y Q, YANG B, LI N, et al. Embrittlement of σ phase in stainless steel for primary coolant pipes of nuclear power plant[J]. Acta Metallurgica Sinica, 2016, 52(1):17-24.
[10] WANG B, LIU Z D, CHENG S C, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature[J]. Journal of Iron and Steel Research, International, 2014, 21(8):765-773.
[11] 彭志文,任文,杨超,等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系[J]. 金属学报, 2015, 51(11):1325-1332. PENG Z W, REN W, YANG C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Acta Metallurgica Sinica, 2015, 51(11):1325-1332.
[12] 侯本睿,赵新宝,杜双明,等. 短期时效处理对HR3C合金显微组织和显微硬度的影响[J]. 热加工工艺, 2016, 45(18):245-251. HOU B R, ZHAO X B, DU S M, et al. Effect of short-aging treatment on microstructure and micro-hardness of HR3C[J]. Hot Working Technology, 2016, 45(18):245-251.
[13] 杜宝帅,魏玉忠,张忠文,等. 高温服役4.2万小时超超临界机组用HR3C钢组织与性能[J]. 材料热处理学报, 2014, 35(12):84-89. DU B S, WEI Y Z, ZHANG Z W, et al. Microstructure and properties of HR3C steel used in ultra-supercritical units after 42000h exposure to elevated temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(12):84-89.
[14] LO K H, SHEK C H, LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering:R:Reports, 2009, 65(4/6):39-104.
[15] JIAO Y, ZHENG W, GUZONAS D, et al. Microstructure instability of candidate fuel cladding alloys:corrosion and stress corrosion cracking implications[J]. JOM, 2015, 68(2):485-489.
[16] MORACHEVSKⅡ A G. Professor Gustav Tammann (to 140th birthday anniversary)[J]. Russian Journal of Applied Chemistry, 2001, 74(9):1610-1615.
[17] PARDO A, MERINO M C, COY A E, et al. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels[J]. Acta Materialia, 2007, 55(7):2239-2251.
[18] 何仙灵,杨庚蔚,毛新平,等. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6):648-656. HE X L, YANG G W, MAO X P, et al. Effect of Nb on the continuous cooling transformation rule and microstructure, mechanical properties of Ti-Mo bearing microalloyed steel[J]. Acta Metallurgica Sinica, 2017, 53(6):648-656.
[19] FARAHAT A I Z, EL-BITAR T. Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels[J]. Materials Science and Engineering:A, 2010, 527(16/17):3662-3669.
[20] WEN D H, WANG Q, JIANG B B, et al. Developing fuel cladding Fe-25Cr-22Ni stainless steels with high microstructural stabilities via Mo/Nb/Ti/Ta/W alloying[J]. Materials Science and Engineering:A, 2018, 719(14):27-42.
[21] WEN D H, JIANG B B, WANG Q, et al. Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Materials & Design, 2017, 128(15):34-46.
[22] BEATTIE H J, VERSNYDER F L. A new complex phase in a high-temperature alloy[J]. Nature, 1956, 178(4526):208-209.
[23] GUO X F, NI Y Y, GONG J M, et al. Formation of G-phase in 20Cr32Ni1Nb stainless steel and its effect on mechanical properties[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9):829-839.
[24] SASIKALA G, RAY S, MANNAN S. Kinetics of transfo-rmation of delta ferrite during creep in a type 316(N) stainless steel weld metal[J]. Materials Science and Engineering:A, 2003, 359(1/2):86-90.
[25] BLACHOWSKI A, CIESLAK J, DUBIEL S M, et al. Effect of titanium on the kinetics of the σ-phase formation in a coarse-grained Fe-Cr alloy[J]. Intermatallics, 2000, 8(8):963-966.
[26] BLACHOWSKI A, CIESLAK J, DUBIEL S M, et al. Effect of titanium on the kinetics of the σ-phase formation in a small grain Fe-Cr alloy[J]. Journal of Alloys and Compounds, 2000, 308(1/2):189-192.
[27] 王博,张军,潘雪娇,等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3):298-306. WANG B, ZHANG J, PAN X J, et al. Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2017, 53(3):298-306.
[28] KIM S B, PAIK K W, KIM Y G. Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels[J]. Materials Science and Engineering:A, 1998, 247(1/2):67-74.
[29] AMIRKHIZ B S, XU S. TEM examination of precipitation behaviour of M23C6 and sigma phases and dislocations in SS 310S under creep deformation at 800℃[J]. Microscopy and Microanalysis, 2015, 21(3):585-586.
[30] SCHWIND M, KALLQVIST J, NILLSSON J O, et al. σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Materialia, 2000, 48(10):2473-2481.
[31] WANG W F, WU M J. Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Materials Science and Engineering:A, 2006, 425(1/2):167-171.
[32] PADILHA A F, ESCRIBA D M, MATERNA-MORRIS E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600℃ up to 10 years[J]. Journal of Nuclear Materials, 2007, 362(1):132-138.
[33] VITEK J, DAVID S. The sigma phase transformation in austenitic stainless steels[J]. Welding Journal, 1986, 65(4):106-111.
[34] VACH M, KUNíKOVÁ T, DOMÁNKOVÁ M, et al. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800℃[J]. Materials Characterization, 2008, 59(12):1792-1798.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[3] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[4] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[5] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[6] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[7] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 姚祥宏, 周琦, 王克鸿, 章晓勇. 基于焊道尺寸控制的电弧增材成形高氮奥氏体不锈钢与316L不锈钢交织结构[J]. 材料工程, 2020, 48(1): 54-60.
[13] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn