Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 107-114    DOI: 10.11868/j.issn.1001-4381.2018.001256
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PtCu/C合金固溶度梯度薄膜催化剂的后处理改性和析氢性能表征
魏白光1, 郝鑫禹2
1. 吉林化工学院, 吉林 吉林 132022;
2. 贺州学院 产教融合与创新创业中心, 广西 贺州 542899
Modification and hydrogen evolution characteristics of post-processing PtCu/C alloy solid solubility gradient membrane catalyst
WEI Bai-guang1, HAO Xin-yu2
1. Jilin Institute of Chemical Technology, Jilin 132022, Jilin, China;
2. Integration of Production and Education and Innovation and Entrepreneurship Center, Hezhou University, Hezhou 542899, Guangxi, China
全文: PDF(4935 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过离子束溅射(IBS)与Pt,Cu双靶移动工艺制备PtCu/C合金固溶度梯度薄膜。利用1mol/L的HNO3对梯度薄膜进行表面刻蚀处理,得到具有大比表面积的催化剂表面结构。X射线衍射(XRD)分析结果表明:复合膜电极表层形成了PtCu置换固溶体合金,原有的Pt晶格收缩,晶面间距缩小;原子力显微镜(AFM)和高分辨透射电镜RTEM&STEM测试结果表明:后处理的样品表面具有多峰结构和沟孔状结构;采用循环伏安法(CV)和线性扫描伏安法(LSV)对样品的电化学析氢性能进行测试,结果表明:梯度材料去合金化可以有效地降低铂载量的同时,提高电化学析氢交换电流密度,后处理样品的Pt载量降低20.29%,电化学析氢交换电流密度达到0.004217A/cm2,催化性能提高20.58%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏白光
郝鑫禹
关键词 离子束溅射梯度薄膜催化剂PtCu/C    
Abstract:PtCu/C membrane catalysts were prepared by ion beam sputtering (IBS) with moving bimetallic Pt and Cu targets. The surface structure of the catalyst with large specific surface area was obtained by surface etching of the gradient membrane with 1mol/L HNO3. The results of X-ray diffraction (XRD) analysis show that the PtCu replacement solid solution alloy is formed on the surface of the composite membrane electrode, the original Pt lattice is contracted and the spacing between the crystal planes is narrowed. Atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) RTEM-STEM measurements show that the surface of the post-processed samples has multi-peak structure and trench-pore structure. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to test the electrochemical hydrogen evolution performance of the samples. The results show that the dealloying of gradient materials can effectively reduce the platinum loading and improve the exchange current density of electrochemical hydrogen evolution. The Pt loading of the post-treatment sample is decreased by 20.29%, the exchange current density of electrochemical hydrogen evolution reaches 0.004217A/cm2, and the catalytic performance is improved by 20.58%.
Key wordsion beam sputtering    gradient film    catalyst    PtCu/C
收稿日期: 2018-10-26      出版日期: 2019-11-21
中图分类号:  TG146.3  
基金资助: 
通讯作者: 郝鑫禹(1986-),男,工程师,硕士,主要从事贵金属多元催化剂、高性能电解电容器用铝箔技术研发,联系地址:广西壮族自治区贺州市贺州学院西校区创新创业园301(542899),E-mail:haoxinyuyu@126.com     E-mail: haoxinyuyu@126.com
引用本文:   
魏白光, 郝鑫禹. PtCu/C合金固溶度梯度薄膜催化剂的后处理改性和析氢性能表征[J]. 材料工程, 2019, 47(11): 107-114.
WEI Bai-guang, HAO Xin-yu. Modification and hydrogen evolution characteristics of post-processing PtCu/C alloy solid solubility gradient membrane catalyst. Journal of Materials Engineering, 2019, 47(11): 107-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001256      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/107
[1] 刘丹丹,邬冰,高颖.碳载Pt-Ni催化剂对直接甲醇燃料电池阴极氧电还原性能的影响[J].燃料化学学报, 2010,38(3):370-373. LIU D D, WU B, GAO Y. Effect of carbon supported Pt-Ni catalysts on oxygen reduction for direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology,2010,38(3):370-373.
[2] 刘勇,魏子栋,陈四国,等,调制脉冲电沉积法制备质子交换膜燃料电池铂催化电极[J].物理化学学报, 2007,23(4):521-525. LIU Y, WEI Z D, CHEN S G, et al. PEMFC electrodes platinized by modulated pulse current electrodeposition[J].Acta Physico-Chimica Sinica, 2007,23(4):521-525.
[3] JAFARIAN M, AZIZI O, GOBAL F, et al. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2007,32(12):1686-1693.
[4] AMIN R S, ABDEL HAMEE R M, EI-KHAIIB K M,et al.Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation[J]. International Journal of Hydrogen Energy,2012,37(24),18870-18881.
[5] 綦小龙,周丽梅,蒋晓慧,等,蒙脱土负载Cu+催化含氮杂环化合物的N-芳基化学反应[J].催化学报,2012,33(12),1877-1882. QI X L, ZHOU L M, JIANG X H, et al. Montmorillonite-supported cooper(Ⅰ) for catalyzing N-arylation of nitrogen heterocycles[J]. Chinese Journal of Catalysis,2012,33(12):1877-1882.
[6] HAO X Y, YANG B, HUANG N.Manufacture of new catalyst PtCuCeO<em>x for fuel cell by IBS and modification by post-processing[J].Advanced Materials Research,2013,608/609:880-883.
[7] 李德宝,齐会杰,李文怀,等.Ni/K2CO3/MoS2低碳醇催化剂的表面结构和电子效应[J].物理化学学报,2006,22(9):1132-1136. LI D B, QI H J, LI W H, et al. Surficial structure and charge effects of Ni promoted K2CO3/MoS2 catalysts for higher alcohols synthesis[J]. Acta Physico-Chimica Sinica,2006,22(9):1132-1136.
[8] 彭红建,谢右卿,聂跃庄.电催化剂Pt的电子结构和催化性能[J].中南大学学报(自然科学版),2007,38(1):98-101. PENG H J, XIE Y Q, NIE Y Z. Electronic structure and catalytic performance of Pt-electrocatalyst[J]. Journal of Central South Univrsity(Science and Technology),2007,38(1):98-101.
[9] MIN M K, CHO J, CHO K,et al.Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications[J]. Electrochimica Acta,2000,45(25):4211-4217.
[10] 卢雯婷,陈敬超,冯晶,等.贵金属催化剂的应用研究进展[J].稀有金属材料与工程,2012,41(1):184-187. LU W T, CHEN J C, FENG J, et al. Research progress of noble metal catalyst application[J]. Rare Metal Materials and Engineering,2012,41(1):184-187.
[11] 周志敏,邵志刚,衣宝廉.不同Pt粒径的Pt/C的氧还原活性和稳定性[J].电池,2009,39(4):177-180. ZHOU Z M, SHAO Z G, YI B L. Oxygen reduction activity and durability of Pt/C with different Pt particle size[J]. Battery Bimonthly,2009,39(4):177-180.
[12] 许涛,杨滨,莘明哲等.离子束溅射技术制备载体型PtCu/LaOx双层膜电极的析氢电化学与结构分析[J].材料科学与工程,2011,29(4):586-591. XU T, YANG B, SHEN M Z, et al. Hydrogen evolution electrochemical and structural analyses of supported PtCu/LaOx double-layer membrane electrodes prepared by ion beam sputtering[J]. Journal of Materials Science & Engineering,2011,29(4):586-591.
[13] 杨瑞枝,PETER S, MICHAEL T.电化学合金化Pt(Pd)-Cu对氧的催化还原活性的研究[J].电化学,2012,18(2):146-150. YANG R Z,PETER S, MICHAEL T. Catalytic activities of electrochemically dealloyed Pt(Pd)/Cu catalysts for oxygen reduction reaction[J]. Journal of Electrochemistry,2012,18(2):146-150.
[14] 周新文,甘亚利,孙世刚.CoPt纳米空心球甲醇电催化氧化和原味电化学傅立叶变换红外光谱研究[J].物理化学学报,2012,28(9):2071-2076. ZHOU X W, GAN Y L, SUN S G.Studies of oxidation processes of methanol on hollow CoPt nanospheres and in situ electrochemical fourier transform infrared spectroscopy[J]. Acta Physico-Chimica Sinica,2012,28(9):2071-2076.
[15] 程敬泉,姚素薇.超声波在电化学中的应用[J].电镀与精饰,2005,27(1):16-20. CHENG J Q, YAO S W. Application of ultrasound in electrochemistry[J]. Plating and Finishing, 2005,27(1):16-20.
[16] MINTSOULI I, GEORGIEVA J, ARMYANOV S,et al. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors[J]. Applied Catalysis:B,2013,136-137:160-165.
[17] 李伯奎.三维粗糙度参数算术平均偏差与均方根偏差的规律研究[J].工具技术,2008,42(9):107-110. LI B K. Study on rule of 3D roughness average and root mean square[J]. Tool Engineering,2008,42(9):107-110.
[18] 李伯奎,左敦稳,刘远伟.轮廓支承长度率曲线的应用研究[J].润滑与密封,2006(173):115-119. LI B K, ZUO D W, LIU Y W. Study on application of the material ratio curve[J]. Lubrication Engineering,2006(173):115-119.
[19] HUANG N, YANG B, SHEN M Z, et al. The effects of acid treatment on the electrocatalysis properties of PtCuLaOx/C composite membrane materials[J]. Rera Metal Materials and Engineering,2013,42(9):1795-1799.
[20] 李高锋,李智敏,宁涛,等.锂离子电池正极材料表面包覆改性研究进展[J].材料工程,2018,46(9):23-30. LI G F,LI Z M,NING T,et al.Research progress of cathode materials modified by surface coating for lithium ion batteries[J].Jouranl of Materials Engineering,2018,46(9):23-30.
[1] 庄金亮, 刘湘粤, 杜嬛. TEMPO功能化锆基MOFs的合成及醇催化氧化性能[J]. 材料工程, 2020, 48(10): 169-175.
[2] 谢博尧, 张纪梅, 郝帅帅, 毕明刚, 朱海彬, 张丽萍. 层状双氢氧化物析氧催化剂的研究进展[J]. 材料工程, 2020, 48(1): 1-9.
[3] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[4] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[5] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[6] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[7] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[8] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[9] 隋静, 胡娜, 段芳, 施冬健, 陈明清. 负载型纳米Pd-M(Ag,Cu)催化剂的制备与催化性能[J]. 材料工程, 2013, 0(5): 53-56.
[10] 刘大博, 祁洪飞, 成波. PS@Au核壳结构纳米催化剂的制备及性能研究[J]. 材料工程, 2012, 0(7): 1-4,91.
[11] 何刚. MK101催化剂受热结构及活性变化[J]. 材料工程, 2010, 0(2): 21-24.
[12] 何刚. 铜系甲醇催化剂失活前后杂质组成和晶粒结构变化[J]. 材料工程, 2010, 0(1): 69-73.
[13] 赵爱明, 张革新. 超强酸催化巯基乙酸甲酯化的分子动力学模拟[J]. 材料工程, 2008, 0(10): 336-338.
[14] 孟根图雅, 曹星辉, 贾美林, 照日格图. 纳米Au/Fe2O3-MOx催化剂的制备及低温催化氧化CO的研究[J]. 材料工程, 2008, 0(10): 356-357,362.
[15] 刘琰, 孙德智, 李磊. Fe2O3/γ-Al2O3催化剂的制备表征及其催化活性的研究[J]. 材料工程, 2007, 0(5): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn