Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 71-78    DOI: 10.11868/j.issn.1001-4381.2018.001261
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铁盐对制备MIL-100(Fe)的影响及其光催化性能
张宇1, 刘湘粤1, 毛会玲1, 王晨1, 杜嬛2, 程琥1, 庄金亮1
1. 贵州师范大学 化学与材料科学学院 贵州省功能材料化学重点实验室, 贵阳 550001;
2. 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室, 北京 100190
Effects of iron salts on synthesis of MIL-100(Fe) and photocatalytic activity
ZHANG Yu1, LIU Xiang-yue1, MAO Hui-ling1, WANG Chen1, DU Xuan2, CHENG Hu1, ZHUANG Jin-liang1
1. Key Laboratory of Functional Materials and Chemistry of Guizhou Province, School of Chemistry and Materials, Guizhou Normal University, Guiyang 550001, China;
2. Key Laboratory of Green Process and Engineering, CAS, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(3708 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 三价铁盐和二价亚铁盐作为合成MIL-100(Fe)的铁源,对所合成产物的结晶度、形貌以及尺寸具有重要影响。以二价亚铁盐作为原料,利用室温水相合成法可获得八面体形状、高结晶度、高比表面积MIL-100(Fe)纳米颗粒;以三价铁盐作为原料,只能获得尺寸更小、低结晶度的Fe-BTC金属-有机聚合物纳米颗粒。采用X射线衍射仪、扫描电子显微镜、傅里叶红外光谱仪、紫外-可见漫反射光谱仪、紫外-可见分光光度计等对MIL-100(Fe)和Fe-BTC纳米颗粒的晶体结构、形貌、光吸收以及对罗丹明B(RhB)吸附和光催化降解性能进行测试表征。结果表明:Fe2+被弱碱性溶液缓慢氧化成Fe3+,进而形成MIL-100(Fe)的无机次级结构单元μ3-OFe(Ⅲ)O6,是合成高结晶度MIL-100(Fe)的关键。以FeCl3为原料时,由于Fe3+与BTC3-快速反应,不利于形成μ3-OFe(Ⅲ)O6次级结构单元,因此产物为Fe-BTC纳米颗粒聚合物。Fe-BTC纳米颗粒粒径更小,且聚集态的纳米颗粒表面具有大孔或介孔结构,更有利于吸附物种以及光降解物种的扩散,因此,Fe-BTC对RhB的吸附和光催化降解性能优于MIL-100(Fe)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宇
刘湘粤
毛会玲
王晨
杜嬛
程琥
庄金亮
关键词 多孔材料金属-有机骨架化合物MIL-100(Fe)有机染料光降解光催化    
Abstract:The iron salts (ferric and ferrous salts) play a critical role for the synthesis of morphology and size controllable, and highly crystalline MIL-100(Fe). The use of ferrous salt results in octahedral, highly crystalline MIL-100(Fe) with high surface areas. In contrast, the use of ferric salt only results in smaller Fe-BTC metal-organic polymers with low crystallinity. The crystal structure, morphology, photo-absorption property, absorption and photocatalytic-degradation properties of MIL-100(Fe) and Fe-BTC toward RhB, were fully characterized by XRD, SEM, FT-IR, UV-Vis DRS, and UV-Vis spectroscopy. The results indicate that the slow oxidation of Fe2+ to Fe3+ is key to the synthesis of highly crystalline MIL-100(Fe) since this process facilitates the formation of μ3-OFe(Ⅲ)O6, which is inorganic secondary building unit (SBU) of MIL-100(Fe). When FeCl3 used as iron source, the fast dynamic reaction of Fe3+ with BTC3- is not beneficial to the formation of μ3-OFe(Ⅲ)O6 SBU; therefore, Fe-BTC nanoparticle polymer is obtained. The smaller size of Fe-BTC nanoparticless, and meso-/macroporous structure in the aggregated nanoparticle surface, which facilitates the diffusion of RhB as well as the photodegradated forms. Fe-BTC shows better absorption capacity and photocatalytic activity toward RhB compared to MIL-100(Fe).
Key wordsporous materials    metal-organic frameworks    MIL-100(Fe)    organic dye photo-degradation    photocatalysis
收稿日期: 2018-10-24      出版日期: 2019-03-12
中图分类号:  O611.4  
通讯作者: 庄金亮(1983-),男,博士,副教授,主要研究方向为功能性金属-有机框架材料的合成及应用,联系地址:贵州省贵阳市云岩区宝山北路116号贵州师范大学化学与材料科学院(550001),E-mail:jlzhuang@xmu.edu.cn     E-mail: jlzhuang@xmu.edu.cn
引用本文:   
张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
ZHANG Yu, LIU Xiang-yue, MAO Hui-ling, WANG Chen, DU Xuan, CHENG Hu, ZHUANG Jin-liang. Effects of iron salts on synthesis of MIL-100(Fe) and photocatalytic activity. Journal of Materials Engineering, 2019, 47(3): 71-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001261      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/71
[1] 丁绍兰,李郑坤,王睿. 染料废水处理技术综述[J]. 水资源保护,2010, 26(3):73-78. DING S L, LI Z K, WANG R. Summary of treatment of dyestuff wastewater[J].Water Resources Protection, 2010, 26(3):73-78.
[2] CRINI G, Non-conventional low-cost adsorbents for dye removal:a review[J]. Bioresource Technology,2006, 97:1061-1085.
[3] LU W, WEI Z, GU ZY, et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews,2014,43:5561-5593.
[4] 沈丽娟, 梁若雯, 吴棱. MOFs光催化材料的设计和调控[J]. 催化学报, 2015, 36(12):2071-2088. SHEN L J, LIANG R W, WU L. Strategies for engineering metal-organic frameworks as efficient photocatalysts[J]. Chinese Journal of Catalysis, 2015, 36(12):2071-2088.
[5] FUJISHIMA A, HONDA K, Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238, 37-38.
[6] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554):469-472.
[7] ROWSEL J L C, YAGHI O M. Metal-organic frameworks:a new class of porous materials[J]. Microporous & Mesoporous Materials, 2004, 73(1):3-14.
[8] ZHU L, LIU X Q, JIANG H L, et al. Metal-organic frameworks for heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117:8129-8176.
[9] WU Z, YUAN X, ZHANG J, et al. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives[J]. Chem Cat Chem,2017, 9(1):41-64.
[10] 刘宝鉴, 杨帆, 邹远兴. 金属有机骨架材料对水中有机酸的吸附性能[J]. 化工环保, 2016, 36(3):268-271. LIU B L, YANG F, ZOU Y X. Adsorption of organic acids from aqueous solution onto metal-organic frameworks[J]. Environmental Protection of Chemical Industry, 2016, 36(3):268-271.
[11] 童敏曼,赵旭东,解丽婷,等.金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, 24(9):1646-1655. TONG M M, ZHAO X D, XIE L T, et al. Treatment of waste water using metal-organic frameworks[J]. Progress in Chemistry, 2012, 24(9):1646-1655.
[12] LI X, GUO W, LIU Z, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369:130-136.
[13] ZHANG C F, QIU L G, KE F, et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J]. Journal of Materials Chemistry A, 2013, 1(45):14329-14334.
[14] WANG C, LIU X, KESER DEMIRN, Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews,2016, 45:5107-5134.
[15] CZAJA A U, TRUKHAN N, MULLER U, Industrial applications of metal-organic frameworks[J]. Chemical Society Reviews,2009, 38:1284-1293.
[16] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J].Nature Materials,2010, 9:172-178.
[17] SERRE C, MILLANGE F, THOUWENOT C, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids:MIL-53 or Cr(Ⅲ)(OH)x[O2CC6H4-CO2]x[HO2CC6H4CO2H]xxH2Oy[J]. Journal of the American Chemical Society, 2002, 124(45):13519-13526.
[18] DEMESSENCE A, HORCAJADA P, SERRE C,et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr)[J].Chemical Communications,2009,0(46):7149-7151.
[19] HORCAJADA P, SURNLE S, SERREC,et al.Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chemical Communications,2007,0(27):2820-2822.
[20] HORCAJADA P, SERREC,VALLET R, et al.Metal-organic frameworks as efficient materials for drug delivery[J].Angewandte Chemie International Edition,2006, 45:5974-5978.
[21] JEREMIAS F, HENNINGER S K, JANIAK C, et al. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway[J]. Dalton Transactions,2016, 45, 8637-8644.
[22] DUAN S, LI J, LIU X, et al. HF-free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent[J]. ACS Sustainable Chemistry & Engineering,2016, 4(6):3368-3378.
[23] ZHANG F, SHI J, JIN Y, et al. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols[J].Chemical Engineering Journal,2015, 259:183-190.
[24] SEO Y K, JI W Y, JIS L, et al. Large scale fluorine-free synthesis of hierarchically porous iron(Ⅲ) trimesate MIL-100(Fe) with a zeolite MTN topology[J]. Microporous & Mesoporous Materials, 2012, 157(27):137-145.
[25] ZHUANG J L, KIND M, GRYTZ F, et al. Insight into the oriented growth of surface-attached metal-organic frameworks:surface functionality, deposition temperature, and first layer order[J]. Journal of the American Chemical Society, 2015, 137:8237-8243.
[26] JEREMIAS F, HENNINGER S K, JANIAK C. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway[J]. Dalton Transactions, 2016, 45:8637-8644.
[27] WANG D, WANG M, LI Z. Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catalysis,2015, 5(11):6852-6857.
[28] LIU X, DANG R, DONG W, et al. A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe):a platform for efficient visible-light-driven photocatalysis[J]. Applied Catalysis B:Environmental,2017, 209:506-513.
[29] LIANG R, CHEN R, JING F, et al. Multifunctional polyoxometalates encapsulated in MIL-100(Fe):highly efficient photocatalysts for selective transformation under visible light[J]. Dalton Transactions,2015, 44:18227-18236.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[3] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[4] 李军, 刘祥萱, 柴云, 刘渊, 张浪浪. MWNTs对MWNTs/Fe2O3光催化性能的影响[J]. 材料工程, 2018, 46(9): 46-52.
[5] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[6] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[7] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[8] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[9] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[10] 刘湘粤, 张宇, 王晨, 毛会玲, 杜嬛, 程琥, 庄金亮. 亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能[J]. 材料工程, 2018, 46(10): 127-134.
[11] 周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
[12] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[13] 曲家惠, 陈金垒, 李红, 张文杰. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J]. 材料工程, 2017, 45(8): 14-18.
[14] 黄凤萍, 崔梦丽, 张双, 郭宇煜, 王帅, 李缨. 高硅氧纤维负载纳米Dy/TiO2薄膜的制备及性能[J]. 材料工程, 2017, 45(7): 66-70.
[15] 曲家惠, 都玲, 赵方昕, 杨丽丽, 张文杰. 溶胶-凝胶法制备La2Ti2O7/HZSM-5及其光催化活性[J]. 材料工程, 2017, 45(7): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn