Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 161-168    DOI: 10.11868/j.issn.1001-4381.2018.001263
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响
曾威1,2, 毛杰1,2, 马景涛1,2,3, 邓畅光1,2, 邓子谦1,2, 邓春明1,2, 宋鹏3
1. 广东省新材料研究所 现代材料表面工程技术国家工程实验室, 广州 510651;
2. 广东省新材料研究所 广东省现代表面工程技术重点实验室, 广州 510651;
3. 昆明理工大学 材料科学与工程学院, 昆明 650093
Effect of surface roughness on deposition of PS-PVD thermal barrier coating ceramic coating
ZENG Wei1,2, MAO Jie1,2, MA Jing-tao1,2,3, DENG Chang-guang1,2, DENG Zi-qian1,2, DENG Chun-ming1,2, SONG Peng3
1. National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651, China;
2. The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Moterials, Guangzhou 510651, China;
3. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(7407 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究基于等离子喷涂-物理气相沉积(PS-PVD)工艺的沉积表面的粗糙度对YSZ陶瓷层结构的影响,初步阐明了表面粗糙度对陶瓷层气相沉积过程的影响和涂层结构的形成规律。采用PS-PVD工艺在预制有NiCoCrAlYTa黏结层的K417G高温合金上制备YSZ陶瓷层;采用SEM、粗糙度检测仪、3D表面形貌仪等方法分析PS-PVD YSZ陶瓷涂层的形貌和结构特征。基体表面粗糙度对PS-PVD涂层结构有很大影响。结果表明:当基体表面粗糙度分别为Ra ≤ 2μm,2μm < Ra < 6μm,Ra ≥ 6μm时,涂层粗糙度分别在3.5~5,6~10,10~15μm区间;特征表面形貌"菜花头"的直径随着基体表面粗糙度的增加而逐渐增大,dP=38.5μm,d280S=25.5μm,d60S=38.7μm,d24S=102μm,dS=137μm。表面粗糙度主要通过PS-PVD气相沉积过程中的阴影效应来影响涂层生长和形成差异性结构,随着基体表面粗糙度的增加,YSZ陶瓷层受阴影效应影响增大,表面形貌"菜花头"尺寸和柱状结构间间隙增大,形成更加疏松的结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾威
毛杰
马景涛
邓畅光
邓子谦
邓春明
宋鹏
关键词 等离子喷涂-物理气相沉积热障涂层YSZ陶瓷层表面粗糙度    
Abstract:The effect of surface roughness based on PS-PVD process on the structure of YSZ ceramic coating was studied. The influence mechanism of surface roughness on gas-phase deposition and structure formation of ceramic coating was discussed. YSZ ceramic coating was prepared by PS-PVD process on K417G superalloy prefabricated with NiCoCrAlYTa bond coating. The morphology and structural characteristics of PS-PVD YSZ coating were analyzed by means of SEM, roughness detector and 3D surface topography instrument. Substrate surface roughness has a great influence on PS-PVD coating structure. When the surface roughness of the substrate is Ra ≤ 2μm, 2μm < Ra < 6μm, and Ra ≥ 6μm, respectively, the coating roughness is in the range of 3.5-5, 6-10μm and 10-15μm, respectively. The diameter of cauliflower head increases with the increase of the surface roughness of substrate. The dP=38.5μm, d280S=25.5μm, d60S=38.7μm, d24S=102μm and dS=137μm. In the process of PS-PVD gas-phase deposition, surface roughness mainly affects the growth and formation of coating differential structures through shadow effect. With the increase of substrate surface roughness, YSZ ceramic coating is affected by shadow effect and the size of cauliflower head and the gap width between columnar structures are increased, forming a relatively loose structure.
Key wordsplasma spray-physical vapor deposition    thermal barrier coating    YSZ ceramic coating    surf-ace roughness
收稿日期: 2018-10-28      出版日期: 2019-08-22
中图分类号:  TG174.453  
通讯作者: 毛杰(1979-),男,高级工程师,博士,研究方向:高温功能涂层,联系地址:广东省广州市天河区长兴路363号广东省新材料研究所(510650),E-mail:maojie@gdinm.com     E-mail: maojie@gdinm.com
引用本文:   
曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
ZENG Wei, MAO Jie, MA Jing-tao, DENG Chang-guang, DENG Zi-qian, DENG Chun-ming, SONG Peng. Effect of surface roughness on deposition of PS-PVD thermal barrier coating ceramic coating. Journal of Materials Engineering, 2019, 47(8): 161-168.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001263      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/161
[1] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10):891-898.
[2] 魏邵斌,陆峰,何利民,等. 热障涂层制备技术及陶瓷层材料的研究进展[J]. 热喷涂技术, 2013, 5(1):31-37. WEI S B, LU F, HE L M, at el. Progress in processing techniques and ceramic materials of thermal barrier coatings[J]. Thermal Spray Technology, 2013, 5(1):31-37.
[3] GUO H B, VAßEN R, STOVER D. Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings[J]. Surface and Coatings Technology, 2005, 192(1):48-56.
[4] 于海涛,牟仁德,谢敏,等. 热障涂层的研究现状及其制备技术[J]. 稀土, 2010, 31(5):83-88. YU H T, MU R D, XIE M, at el. Evolution status and proce-ssing technologies of thermal barrier coatings[J]. Chinese Rare Earths, 2010, 31(5):83-88.
[5] SONG P, NAUMENKO D, VAßEN R, et al. Effect of oxygen content in NiCoCrAlY bondcoat on the lifetimes of EB-PVD and APS thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 221:207-213.
[6] SHEN Z Y, HE L M, XU Z H, et al., Morphological evolution and failure of LZC/YSZ DCL TBCs by electron beam-physical vapor deposition[J]. Materialia, 2018, 4:340-347.
[7] SHEN Z Y, HE L M, XU Z H. Rare earth oxides stabilized La2Zr2O7 TBCs:EB-PVD, thermal conductivity and thermal cycling life[J]. Surface and Coatings Technology, 2019, 357:427-432.
[8] VON NIESSEN K, GINDRAT M. Plasma spray-PVD:a new thermal spray process to deposit out of the vapor phase[J]. Journal of Thermal Spray Technology, 2011, 20(4):736-743.
[9] SAMPATH S, SCHULZ U, JARLIGO M O, et al. Processing science of advanced thermal-barrier systems[J]. MRS Bulletin, 2012, 37(10):903-910.
[10] MAO J, DENG Z Q, LIU M, et al. Regional characteristics of YSZ coating prepared by expanded Ar/He/H plasma jet at very low pressure[J]. Surface and Coatings Technology, 2017, 328:240-247.
[11] 袁佟,邓畅光,毛杰,等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层结构及热导率研究[J]. 材料工程, 2017, 45(7):1-6. YUAN T, DENG C G, MAO J, et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering, 2017, 45(7):1-6.
[12] SHINOZAWA A, EGUCHI K, KAMBARA M, et al. Feather-like structured YSZ coatings at fast rates by plasma spray physical vapor deposition[J]. Journal of Thermal Spray Technology, 2010, 19(1/2):190-197.
[13] MAO J, LIU M, DENG C G, et al. Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology[J]. Journal of Engineering Materials and Technology, 2017, 139(4):041003.
[14] MAUER G, HOSPACH A, VAßEN R. Process development and coating characteristics of plasma spray-PVD[J]. Surface and Coatings Technology, 2013, 220:219-224.
[15] GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 237:51-55.
[16] GAO L H, WEI L L, GUO H B, et al. Deposition mechanisms of yttria stabilized zirconia coatings during plasma spray physical vapor deposition[J]. Ceramics International, 2016, 42(4):5530-5536.
[17] ZHANG X F, ZHOU K S, DENG C G, et al. Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J]. Journal of the European Ceramic Society, 2016, 36(3):697-703.
[18] DENG Z Q, LIU M, MAO J, et al. Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J]. Vacuum, 2017, 145:39-46.
[19] DENG Z Q, ZHANG X F, ZHOU K S, et al. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation[J]. Chinese Journal of Aeronautics, 2018, 31(4):820-825.
[1] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[2] 张晓颖, 荣新山, 徐吉成, 周向同, 吴智仁. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
[3] 任德均, 李锐, 王明连, 刘九山. 磁场对磁流变弹性体表面特性的影响[J]. 材料工程, 2019, 47(3): 79-86.
[4] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[5] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[6] 陈文龙, 刘敏, 张吉阜, 宋进兵. 燃气热循环下7YSZ热障涂层的微结构演变与阻抗谱特征[J]. 材料工程, 2017, 45(10): 79-87.
[7] 任学冲, 陈利钦, 刘鑫贵, 项彬, 林国标. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J]. 材料工程, 2015, 43(12): 1-5.
[8] 黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
[9] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[10] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[11] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[12] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[13] 何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
[14] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[15] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn