Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 92-99    DOI: 10.11868/j.issn.1001-4381.2018.001293
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制
田晋1, 高立1, 蔡滨2, 齐泽昊1, 谭业发1
1. 陆军工程大学 野战工程学院, 南京 210007;
2. 陆军南京军代局, 南京 210024
Tribological behavior and wear mechanism of modified nano-SiO2 reinforced epoxy composites
TIAN Jin1, GAO Li1, CAI Bin2, QI Ze-hao1, TAN Ye-fa1
1. Institute of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China;
2. Army Nanjing Military Agency, Nanjing 210024, China
全文: PDF(4786 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 运用共价官能化技术,实现纳米SiO2表面接枝3-氨丙基三乙氧基硅烷(APTES)改性(T-SiO2),并制备功能化纳米SiO2改性环氧树脂复合材料(T-SiO2/EP),分析改性后纳米SiO2表面官能团和化学元素的变化规律,测试T-SiO2/EP的主要力学性能,研究其在干摩擦条件下的摩擦磨损行为与机制。结果表明:功能化纳米SiO2的引入,有效改善了环氧树脂的力学与摩擦学性能,且当功能化纳米SiO2含量为2%时(质量分数,下同),环氧复合材料(2% T-SiO2/EP)的显微硬度和断裂韧度均达到最大值(70.2HD和1.02MPa·m1/2),并具有优异的减摩耐磨性能。干摩擦条件下,2% T-SiO2/EP复合材料的摩擦因数和磨损失重分别为0.49和1.7mg,较纯环氧树脂分别降低了31.9%和34.6%,较未改性纳米SiO2增强的环氧树脂复合材料(U-SiO2/EP)分别降低了14%和10.5%,并对相应的磨损机理进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田晋
高立
蔡滨
齐泽昊
谭业发
关键词 环氧树脂(EP)纳米SiO2复合材料表面改性摩擦磨损    
Abstract:Nano-SiO2 surface grafted APTES (T-SiO2) was realized by covalent functionalization technology, and functionalized nano-SiO2 modified epoxy resin composite (T-SiO2/EP) was prepared. The surface functional groups and chemical elements of the functionalized nano-SiO2were analyzed and the mechanical and tribological properties of the T-SiO2/EP were tested. The results show that the mechanical and tribological properties of the epoxy resin are effectively improved due to the introduction of functionalized nano-SiO2. When the content of functionalized nano-SiO2 is 2%(mass fraction, same as below), the microhardness and fracture toughness of the composites (2%T-SiO2/EP) can reach the maximum, which are 70.2HD and 1.02MPa·m1/2 respectively, moreover, in dry friction condition, the friction coefficient and the wear loss reach the minimum, which are 0.49mg and 1.7mg respectively. Compared with pure epoxy resin, they are reduced by 31.9% and 34.6%, and compared with 2% unmodified nano-SiO2 reinforced epoxy resin composite, they are reduced by 14% and 10.5%,and the corresponding wear mechanism is analyzed.
Key wordsepoxy resin    nano-SiO2    composites    surface modification    friction and wear
收稿日期: 2018-11-06      出版日期: 2019-11-21
中图分类号:  TB332  
基金资助: 
通讯作者: 高立(1984-),女,讲师,硕士,研究方向为高分子复合材料,联系地址:江苏省南京市秦淮区海福巷1号陆军工程大学野战工程学院(210007),E-mail:gaoli5429@163.com     E-mail: gaoli5429@163.com
引用本文:   
田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
TIAN Jin, GAO Li, CAI Bin, QI Ze-hao, TAN Ye-fa. Tribological behavior and wear mechanism of modified nano-SiO2 reinforced epoxy composites. Journal of Materials Engineering, 2019, 47(11): 92-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001293      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/92
[1] MASSINGILLG L, SHEIHP S, WHITESIDER C, et al. Fundamental studies of epoxy resins for can and coil coatings II:flexibility and adhesion of epoxy resins[J]. Journal of Coatings Technology, 1990, 62:31-39.
[2] LIN L Y, KIM D E, KIM W K, et al. Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy[J]. Surface & Coatings Technology, 2011, 205(20):4864-4869.
[3] GOLRU S S, ATTAR M M, RAMEZANZADEH B. Studying the influence of nano-Al2O3, particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050[J]. Progress in Organic Coatings, 2014, 77(9):1391-1399.
[4] AZMAN N Z, SIDDIQUI S A, LOW I M. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4952-4957.
[5] VIJAYAN P P, PIONTECK J, HUCZKO A, et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocom-posites:volume shrinkage, cure kinetics and properties[J]. Composites Science & Technology, 2014, 102(4):65-73.
[6] CHANDRASEKARAN S, SEIDEL C, SCHULTE K. Prepar-ation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite:mechanical, electrical and thermal properties[J]. European Polymer Journal, 2013, 49(12):3878-3888.
[7] KNOPP D, TANG D, NIESSNER R. Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Analytica Chimica Acta, 2009, 647(1):14-30.
[8] SHIN Y, LEE D, LEE K, et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial & Engineering Chemistry, 2008, 14(4):515-519.
[9] LEE S I, KIM D B, SIN J H, et al. Polyurethane/silica composites, prepared via in-situ polymerization in the presence of chemically modified silicas[J]. Biochimica et Biophysica Acta, 2007, 1862(2):274-283.
[10] TZETZIS D, MANSOUR G, TSIAFIS I, et al. Nanoindent-ation measurements of fumed silica epoxy reinforced nanocom-posites[J]. Journal of Reinforced Plastics & Composites, 2013, 32(3):160-173.
[11] SIENGCHIN S. Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites:effect of flax reinforcing structures[J]. Journal of Reinforced Plastics & Composites, 2012, 31(14):959-966.
[12] WANG X, WANG L, SU Q, et al. Use of unmodified SiO2, as nanofiller to improve mechanical properties of polymer-based nanocomposites[J]. Composites Science &Technology, 2013, 89(1):52-60.
[13] SINGH S K, KUMAR A, JAIN A. Improving tensile and flexural properties of SiO2-epoxy polymer nanocomposite[J]. Materials Today, 2018, 5(2):6339-6344.
[14] ZHANG H, TANG L C, ZHANG Z, et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer, 2008, 49(17):3816-3825.
[15] QI Z, TAN Y, WANG H, et al. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites[J]. Polym Test,2017,64:38-47.
[16] SPANGE S. Silica surface modification by cationic polymeri-zation and carbenium intermediates[J]. Progress in Polymer Science, 2000, 25(6):781-849.
[17] SBIRRAZZUOLI N, MITITELU-MIJA A, VINCENT L, et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures[J]. Thermochimica Acta, 2006, 447(2):167-177.
[18] KINLOCH A J, WILLIAMS J G. Crack blunting mechanisms in polymers[J]. Journal of Materials Science, 1980, 15(4):987-996.
[19] 胡海霞,于思荣,王玉辉,等. 环氧树脂在干摩擦过程中的表面化学效应研究[J]. 摩擦学学报, 2007, 27(3):241-245. HU H X, YU S R, WANG Y H, et al. Surface chemical effects of epoxy resin in dry friction[J]. Journal of Tribology, 2007, 27(3):241-245.
[20] 邵鑫,田军,刘维民,等. 纳米SiO2对聚醚砜酮复合材料摩擦学性能的影响[J]. 材料工程, 2002(2):38-42. SHAO X, TIAN J, LIU W M, et al. Effect of nano-SiO2 on tribological properties of polyethersulfone ketone composites[J]. Journal of Materials Engineering, 2002(2):38-42.
[21] 雷毅,郭建良,张雁翔. 填充纳米SiO2对超高分子量聚乙烯复合材料摩擦磨损性能的影响[J]. 润滑与密封, 2006(12):41-43. LEI Y, GUO J L, ZHANG Y X. Effect of nano-SiO2 filling on friction and wear properties of ultra high molecular weight polyethylene composites[J]. Lubrication & Sealing, 2006(12):41-43.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn