Abstract:Nano-SiO2 surface grafted APTES (T-SiO2) was realized by covalent functionalization technology, and functionalized nano-SiO2 modified epoxy resin composite (T-SiO2/EP) was prepared. The surface functional groups and chemical elements of the functionalized nano-SiO2were analyzed and the mechanical and tribological properties of the T-SiO2/EP were tested. The results show that the mechanical and tribological properties of the epoxy resin are effectively improved due to the introduction of functionalized nano-SiO2. When the content of functionalized nano-SiO2 is 2%(mass fraction, same as below), the microhardness and fracture toughness of the composites (2%T-SiO2/EP) can reach the maximum, which are 70.2HD and 1.02MPa·m1/2 respectively, moreover, in dry friction condition, the friction coefficient and the wear loss reach the minimum, which are 0.49mg and 1.7mg respectively. Compared with pure epoxy resin, they are reduced by 31.9% and 34.6%, and compared with 2% unmodified nano-SiO2 reinforced epoxy resin composite, they are reduced by 14% and 10.5%,and the corresponding wear mechanism is analyzed.
[1] MASSINGILLG L, SHEIHP S, WHITESIDER C, et al. Fundamental studies of epoxy resins for can and coil coatings II:flexibility and adhesion of epoxy resins[J]. Journal of Coatings Technology, 1990, 62:31-39.
[2] LIN L Y, KIM D E, KIM W K, et al. Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy[J]. Surface & Coatings Technology, 2011, 205(20):4864-4869.
[3] GOLRU S S, ATTAR M M, RAMEZANZADEH B. Studying the influence of nano-Al2O3, particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050[J]. Progress in Organic Coatings, 2014, 77(9):1391-1399.
[4] AZMAN N Z, SIDDIQUI S A, LOW I M. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4952-4957.
[5] VIJAYAN P P, PIONTECK J, HUCZKO A, et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocom-posites:volume shrinkage, cure kinetics and properties[J]. Composites Science & Technology, 2014, 102(4):65-73.
[6] CHANDRASEKARAN S, SEIDEL C, SCHULTE K. Prepar-ation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite:mechanical, electrical and thermal properties[J]. European Polymer Journal, 2013, 49(12):3878-3888.
[7] KNOPP D, TANG D, NIESSNER R. Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Analytica Chimica Acta, 2009, 647(1):14-30.
[8] SHIN Y, LEE D, LEE K, et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial & Engineering Chemistry, 2008, 14(4):515-519.
[9] LEE S I, KIM D B, SIN J H, et al. Polyurethane/silica composites, prepared via in-situ polymerization in the presence of chemically modified silicas[J]. Biochimica et Biophysica Acta, 2007, 1862(2):274-283.
[10] TZETZIS D, MANSOUR G, TSIAFIS I, et al. Nanoindent-ation measurements of fumed silica epoxy reinforced nanocom-posites[J]. Journal of Reinforced Plastics & Composites, 2013, 32(3):160-173.
[11] SIENGCHIN S. Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites:effect of flax reinforcing structures[J]. Journal of Reinforced Plastics & Composites, 2012, 31(14):959-966.
[12] WANG X, WANG L, SU Q, et al. Use of unmodified SiO2, as nanofiller to improve mechanical properties of polymer-based nanocomposites[J]. Composites Science &Technology, 2013, 89(1):52-60.
[13] SINGH S K, KUMAR A, JAIN A. Improving tensile and flexural properties of SiO2-epoxy polymer nanocomposite[J]. Materials Today, 2018, 5(2):6339-6344.
[14] ZHANG H, TANG L C, ZHANG Z, et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer, 2008, 49(17):3816-3825.
[15] QI Z, TAN Y, WANG H, et al. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites[J]. Polym Test,2017,64:38-47.
[16] SPANGE S. Silica surface modification by cationic polymeri-zation and carbenium intermediates[J]. Progress in Polymer Science, 2000, 25(6):781-849.
[17] SBIRRAZZUOLI N, MITITELU-MIJA A, VINCENT L, et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures[J]. Thermochimica Acta, 2006, 447(2):167-177.
[18] KINLOCH A J, WILLIAMS J G. Crack blunting mechanisms in polymers[J]. Journal of Materials Science, 1980, 15(4):987-996.
[19] 胡海霞,于思荣,王玉辉,等. 环氧树脂在干摩擦过程中的表面化学效应研究[J]. 摩擦学学报, 2007, 27(3):241-245. HU H X, YU S R, WANG Y H, et al. Surface chemical effects of epoxy resin in dry friction[J]. Journal of Tribology, 2007, 27(3):241-245.
[20] 邵鑫,田军,刘维民,等. 纳米SiO2对聚醚砜酮复合材料摩擦学性能的影响[J]. 材料工程, 2002(2):38-42. SHAO X, TIAN J, LIU W M, et al. Effect of nano-SiO2 on tribological properties of polyethersulfone ketone composites[J]. Journal of Materials Engineering, 2002(2):38-42.
[21] 雷毅,郭建良,张雁翔. 填充纳米SiO2对超高分子量聚乙烯复合材料摩擦磨损性能的影响[J]. 润滑与密封, 2006(12):41-43. LEI Y, GUO J L, ZHANG Y X. Effect of nano-SiO2 filling on friction and wear properties of ultra high molecular weight polyethylene composites[J]. Lubrication & Sealing, 2006(12):41-43.