Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 81-92    DOI: 10.11868/j.issn.1001-4381.2018.001298
  综述 本期目录 | 过刊浏览 | 高级检索 |
柔性阻变存储器材料研究进展
唐大秀1,2,3, 刘金云2,3, 王玉欣1,2,3, 尚杰2,3, 刘钢2,3, 刘宜伟2,3, 张辉1, 陈清明1, 刘翔1, 李润伟2,3
1. 昆明理工大学 材料科学与工程学院, 昆明 650093;
2. 中国科学院 宁波材料技术与工程研究所 中国科学院磁性材料与器件重点实验室, 宁波 315201;
3. 中国科学院 宁波材料技术与工程研究所 浙江省磁性材料及其应用技术重点实验室, 宁波 315201
Research progress in flexible resistive random access memory materials
TANG Da-xiu1,2,3, LIU Jin-yun2,3, WANG Yu-xin1,2,3, SHANG Jie2,3, LIU Gang2,3, LIU Yi-wei2,3, ZHANG Hui1, CHEN Qing-ming1, LIU Xiang1, LI Run-wei2,3
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3. Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(9942 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 本文简述了阻变存储器的基本结构、工作原理、发展历程和研究现状,归纳总结了柔性阻变存储器的材料体系,包括介质材料、电极材料和基底材料,以及柔性阻变存储器材料体系的总体趋势和最新研究进展;分析了柔性阻变存储器的性能特点,包括存储性能和力学性能。阐述了发展柔性阻变存储器的重要意义与面临的挑战,提出了该领域现在研究中存在的不足和未来需要进一步研究的方向。得出力学性能稳定的高电导可拉伸电极和存储性能稳定的可拉伸介质是柔性阻变存储器材料今后发展的主要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐大秀
刘金云
王玉欣
尚杰
刘钢
刘宜伟
张辉
陈清明
刘翔
李润伟
关键词 柔性阻变存储器介质材料电极材料基底材料存储性能力学性能    
Abstract:The basic structure, working principle, and the development process and research status of resistive random access memory (RRAM) were outlined. Material systems, including dielectric materials, electrode materials, and substrate materials, as well as broad trends and recent researches of flexible RRAM were summarized; the performance characteristics of flexible RRAM, including storage performance and mechanics performance, were analyzed. The significance and challenge of developing flexible RRAM were explicated. Problems existing in this area and possible approaches to the problems were also put forward. It was concluded that the highly conductive stretchable electrode and the steadily stored stretchable dielectric are primary direction in the future.
Key wordsflexible resistive random access memory    dielectric material    electrode material    substrate material    storage performance    mechanics performance
收稿日期: 2018-11-06      出版日期: 2020-07-21
中图分类号:  TB34  
基金资助: 
通讯作者: 尚杰(1979-),男,研究员,博士,主要从事柔性/可拉伸阻变存储器和应力传感器材料与器件研究,联系地址:浙江省宁波市镇海区中官西路1219号(315201),E-mail:shangjie@nimte.ac.cn;刘翔(1973-),男,教授,博士,主要从事光电功能陶瓷、薄膜材料及器件研究,联系地址:云南省昆明市一二一大街文昌路68号(650093),E-mail:lxjim@126.com;李润伟(1974-),男,研究员,博士,主要从事可用于新型存储和传感的磁电功能材料探索及原型器件设计,联系地址:浙江省宁波市镇海区中官西路1219号(315201),E-mail:runweili@nimte.ac.cn     E-mail: shangjie@nimte.ac.cn
引用本文:   
唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
TANG Da-xiu, LIU Jin-yun, WANG Yu-xin, SHANG Jie, LIU Gang, LIU Yi-wei, ZHANG Hui, CHEN Qing-ming, LIU Xiang, LI Run-wei. Research progress in flexible resistive random access memory materials. Journal of Materials Engineering, 2020, 48(7): 81-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001298      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/81
[1] 张颖,龙世兵,刘明. 新型阻变存储器的物理研究与产业化前景[J]. 物理, 2017, 46(10):645-657. ZHANG Y, LONG S B, LIU M. The physics and industrialization prospects of RRAMs[J]. Physics, 2017, 46(10):645-657.
[2] AKIHITO S. Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11(6):28-36.
[3] SIMMONS J G, VERDERBER R R. New conduction and reversible memory phenomena in thin insulating films[J]. Proceedings the Royal of Society A, 1967, 301(1464):77-102.
[4] KIM S, MOON H, GUPTA D, et al. Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications[J]. IEEE Transactions on Electron Devices, 2009, 56(4):696-699.
[5] JEONG H Y, KIM Y I, LEE J Y, et al. A low-temperature-grown TiO2-based device for the flexible stacked RRAM application[J]. Nanotechnology, 2010, 21(11):115203-115208.
[6] KIM S, JEONG H Y, KIM S K, et al. Flexible memristive memory array on plastic substrates[J]. Nano Letters, 2011, 11(12):5438-5442.
[7] KIM S, YARIMAGA O, CHOI S J, et al. Highly durable and flexible memory based on resistance switching[J]. Solid State Electronics, 2010, 54(4):392-396.
[8] JEONG H Y, KIM J Y, KIM J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications[J]. Nano Letters, 2010, 10(11):4381-4386.
[9] WANG Z Q, XU H Y, LI X H, et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance[J]. IEEE Electron Device Letters, 2011, 32(10):1442-1444.
[10] HU Y J, LEE J Y, CHOI S Y. Interface-engineered amorphous TiO2-based resistive memory devices[J]. Advanced Functional Materials, 2010, 20(22):3912-3917.
[11] CHENG C, YEH F, CHIN A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance[J]. Advanced Materials, 2011, 23(7):902-905.
[12] JANG J, PAN F, BRAAM K, et al. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications[J]. Advanced Materials, 2012, 24(26):3573-3576.
[13] JU Y C, KIM S, SEONG T G, et al. Resistance random access memory based on a thin film of cds nanocrystals prepared via colloidal synthesis[J]. Small, 2012, 8(18):2849-2855.
[14] HUANG R, TANG Y, KUANG Y, et al. Resistive switching in organic memory device based on parylene-c with highly compatible process for high-density and low-cost memory applications[J]. IEEE Transactions on Electron Devices, 2012, 59(12):3578-3582.
[15] HWANG S K, LEE J M, KIM S, et al. Flexible multilevel resistive memory with controlled charge trap B-and N-doped carbon nanotubes[J]. Nano Letters, 2012, 12(5):2217-2221.
[16] LEE B H, BAE H, SEONG H, et al.Direct observation of a carbon filament in water-resistant organic memory[J].ACS Nano, 2015, 9(7):7306-7313.
[17] JANG B C, SEONG H, KIM S K, et al. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2016, 8(20):12951-12958.
[18] PAN L, JI Z, YI X, et al. Metal-organic framework nanofilm for mechanically flexible information storage applications[J]. Advanced Functional Materials, 2015, 25(18):2677-2685.
[19] ZOU S, XU P, HAMILTON M C. Resistive switching characteristics in printed CuCuO(AgO)Ag memristors[J]. Electronics Letters, 2013, 49(13):829-830.
[20] YOO H G, KIM S, LEE K J. Flexible one diode-one resistor resistive switching memory arrays on plastic substrates[J]. RSC Advances, 2014, 4(38):20017-20023.
[21] ZHAO H, TU H, WEI F, et al. High mechanical endurance RRAM based on amorphous gadolinium oxide for flexible nonvolatile memory application[J]. Journal of Physics D:Applied Physics, 2015, 48(20):205104-205110.
[22] YUAN F, YE Y R, WANG J C, et al. Retention behaviour of graphene oxide resistive switching memory[J]. International Journal of Nanotechnology, 2014, 11(1/4):106-115.
[23] ZHAO X L, WANG R, XIAO X H, et al. Flexible cation-based threshold selector for resistive switching memory integration[J]. Science China Information Sciences, 2018, 61(6):060413-060420.
[24] SHANG J, XUE W H, JI Z H, et al. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films[J]. Nanoscale, 2017, 9(21):7037-7046.
[25] MONDAL S, HER J L, KOYAMA K, et al. Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications[J]. Nanoscale Research Letters, 2014, 9(1):3-10.
[26] MONDAL S, CHUEH C H, PAN T M. Current conduction and resistive switching characteristics of Sm2O3 and Lu2O3thin films for low-power flexible memory applications[J]. Journal of Applied Physics, 2014, 115(1):014501-014508.
[27] ZOU C, ZOU C, ZHOU L, et al. Resistive switching characteristics of thin NiO film based flexible nonvolatile memory devices[J]. Microelectronic Engineering, 2012, 91(3):144-146.
[28] KIM S, SON J H, LEE S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off[J]. Advanced Materials, 2014, 26(44):7480-7487.
[29] WANG G, RAJI A R O, LEE J H, et al. Conducting-interlayer SiOx memory devices on rigid and flexible substrates[J]. ACS Nano, 2014, 8(2):1410-1418.
[30] LYU M, LIU Y, ZHI Y, et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition[J]. Journal of the American Chemical Society, 2015, 137(47):15043-15048.
[31] YAMADA T, MAKIOMOTO N, SEKIGUCHI A, et al. Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices[J]. Nano Letters, 2012, 12(9):4540-4545.
[32] TEDESCO J L, STEPHEY L, HERNÁNDEZMORA M, et al. Switching mechanisms in flexible solution-processed TiO2 memristors[J]. Nanotechnology, 2012, 23(30):305206-305212.
[33] WU C, ZHANG K, WANG F, et al. Resistance switching characteristics of sputtered titanium oxide on a flexible substrate[J]. ECS Transactions, 2012, 44(1):87-91.
[34] LIEN D H, KAO Z K, HUANG T H, et al. All-printed paper memory[J]. ACS Nano, 2014, 8(8):7613-7619.
[35] YEOM S W, PARK S W, JUNG I, et al. Highly flexible titanium dioxide-based resistive switching memory with simple fabrication[J]. Applied Physics Express, 2014, 7(10):101801-101804.
[36] PHAM K N, DUNG HOANG V, TRAN C V, et al. TiO2 thin film based transparent flexible resistive switching random access memory[J]. Advances in Natural Sciences Nanoscience & Nanotechnology, 2016, 7(1):015017-015019.
[37] LIANG L, LI K, XIAO C, et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device[J]. Journal of the American Chemical Society, 2015, 137(8):3102-3108.
[38] JI Y, YANG Y, LEE S K, et al. Flexible nanoporous WO3-x nonvolatile memory device[J]. ACS Nano, 2016, 10(8):7598-7603.
[39] WU X, XU Z, YU Z, et al. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications[J]. Journal of Physics D:Applied Physics, 2015, 48(11):115101-115109.
[40] RAEIS H N, LEE J S. Resistive switching memory based on bioinspired natural solid polymer electrolytes[J]. ACS Nano, 2015, 9(1):419-426.
[41] SUN B, ZHANG X, ZHOU G, et al. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate[J]. Journal of Colloid & Interface Science, 2018, 520:19-24.
[42] KHURANA G, MISRA P, KUMAR N, et al. Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods[J]. Journal of Physical Chemistry C, 2014, 118(37):21357-21364.
[43] WANG T Y, YU L J, CHEN L, et al. Atomic layer deposited Hf0.5Zr0.5O2-based flexible RRAM[J]. IEEE, 2017:203-206.
[44] WU Z, ZHU J, ZHOU Y, et al. Bipolar Resistive Switching Properties of Hf0.5Zr0.5O2 Thin Film for Flexible Memory Applications[J]. Physica Status Solidi, 2018, 215(1):1700396-1700400.
[45] WU Z, ZHU J, LIU X. Resistive switching properties of HfxZr1-xO2 thin films for flexible memory applications[J]. Journal of Materials:Science Materials in Electronics, 2017, 28(14):10625-10629.
[46] LIU P T, CHU L W, TENG L F, et al. Transparent amorphous oxide semiconductors for system on panel applications[J]. ECS Transactions, 2013, 50(8):257-268.
[47] CHOI J M, KIM M S, SEOL M L, et al. Transfer of functional memory devices to any substrate[J]. Physica Status Solidi:Rapid Research Letters, 2013, 7(5):326-331.
[48] ALI S, BAE J, CHONG H L. Printed non-volatile resistive switches based on zinc stannate (ZnSnO3)[J]. Current Applied Physics, 2016, 16(7):757-762.
[49] HAO C, WEN F, XIANG J, et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications[J]. Advanced Functional Materials, 2016, 26(12):2016-2024.
[50] DELERUYELLE D, PUTERO M, OULED T. Ge2Sb2Te5 layer used as solid electrolyte in conductive-bridge memory devices fabricated on flexible substrate[J]. Solid State Electronics, 2013, 79(1):159-165.
[51] LEE K J, CHANG Y C, LEE C J, et al. Bipolar resistive switching characteristics in flexible PtMZTAl memory and NiNbO2Ni selector structure[J]. IEEE Journal of the electron devices society, 2018, 6(1):518-524.
[52] HAN S T, ZHOU Y, CHEN B, et al. Hybrid flexible resistive random access memory-gated transistor for novel nonvolatile data storage[J]. Small, 2016, 12(3):390-396.
[53] LEE K J, CHANG Y C, LEE C J, et al. Effects of Ni in strontium titanate nickelate thin films for flexible nonvolatile memory applications[J]. IEEE Transactions on Electron Devices, 2017, 64(5):2001-2007.
[54] WANG D T, DAI Y W, XU J, et al. Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles[J]. IEEE Electron Device Letters, 2016, 37(7):878-881.
[55] BEHERA B, MAITY S, KATIYAR A K, et al. High-performance flexible resistive memory devices based on Al2O3:GeOx composite[J]. Superlattices and Microstructures, 2018, 117:298-304.
[56] KIM M, CHOI K C.Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes[J]. IEEE Transactions on Electron Devices, 2017, 64(8):3508-3510.
[57] PARK S, CHO K, KIM S. Memory characteristics of flexible resistive switching devices with triangular-shaped silicon nanowire bottom electrodes[J]. Semiconductor Science & Technology, 2015, 30(5):055019-055021.
[58] FANG R C, SUN Q Q, ZHOU P, et al. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition[J]. Nanoscale Research Letters, 2013, 8(1):92-98.
[59] YE C, DENG T, ZHANG J, et al. Enhanced resistive switching performance for bilayer HfO2TiO2 resistive random access memory[J]. Semiconductor Science & Technology, 2016, 31(10):105005-105011.
[60] TIAN H, CHEN H Y, REN T L, et al. Cost-effective,transfer-free,flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology[J]. Nano Letters, 2014, 14(6):3214-3219.
[61] SON D, CHAE S I, KIM M, et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory[J]. Advanced Materials, 2016, 28(42):9326-9332.
[62] DAI Y W, CHEN L, YANG W, et al. Complementary resistive switching in flexible rram devices[J]. IEEE Electron Device Letters, 2014, 35(9):915-917.
[63] LU J M, ZHANG Q J, HE J H, et al. Ternary flexible electro-resistive memory device based on small molecules[J]. Chemistry-An Asian Journal, 2016, 11(10):1624-1630.
[64] ZHU J X, ZHOU W L, WANG Z Q, et al. Flexible,transferable and conformal egg albumen based resistive switching memory devices[J]. RSC Advances, 2017, 7(51):32114-32119.
[65] CAI Y, TAN J, YEFAN L, et al. A flexible organic resistance memory device for wearable biomedical applications[J]. Nanotechnology, 2016, 27(27):275206-275211.
[66] LIN M, CHEN Q, WANG Z, et al. Flexible polymer device based on parylene-c with memory and temperature sensing functionalities[J]. Polymers, 2017, 9(8):310-318.
[67] CHEN Q Y, LIN M, FANG Y C, et al. Integration of biocompatible organic resistive memory and photoresistor for wearable image sensing application[J]. Science China Information Sciences, 2018, 61(6):060411-060418.
[68] BHANSALI U S, KHAN M A, CHA D, et al. Metal-free,single-polymer device exhibits resistive memory effect[J]. ACS Nano, 2013, 7(12):10518-10524.
[69] WAND T Y, HE Z Y, CHEN L, et al. An organic flexible artificial bio-synapses with long-term plasticity for neuromorphic computing[J]. Micromachines, 2018, 9(5):239-246.
[70] LAI Y C, HUANG Y C, LIN T Y, et al. Stretchable organic memory:toward learnable and digitized stretchable electronic applications[J]. NPG Asia Materials, 2014, 6(2):87-93.
[71] WANG J T, SAITO K, WU H C, et al. High-performance stretchable resistive memories using donor-acceptor block copolymers with fluorene rods and pendent isoindigo coils[J]. NPG Asia Materials, 2016, 8(8):298-309.
[72] HUNG C C, CHIU Y C, WU H C, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers[J]. Advanced Functional Materials, 2017, 27(13):1606161-1606170.
[73] HAN S T, HU L, WANG X, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics[J].Advanced Science,2017,4(8):1600435-1600441.
[74] ALI S, BAE J, CHONG H L, et al. All-printed and highly stable organic resistive switching device based on graphene quantum dots and polyvinylpyrrolidone composite[J]. Organic Electronics, 2015, 25:225-231.
[75] CHENG X F, XIANG H, JIN Z, et al. Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance[J]. Small, 2018, 14(12):1703667-1703674.
[76] HUANG X, ZHENG B, LIU Z, et al. Coating two-dimensional nanomaterials with metal-organic frameworks[J]. ACS Nano, 2014, 8(8):8695-8701.
[77] 何品,叶葱,邓腾飞,等. 基于ITO电极下氧化铪基阻变存储器的性能研究[J]. 稀有金属, 2016, 40(3):236-242. HE P, YE C, DENG T F, et al. Resistive switching characteristics of HfO2 based resistive random access memory (RRAM) using ITO electrode[J]. Chinese Journal of Rare Metals, 2016, 40(3):236-242.
[78] 刘金刚,倪洪江,周伟峰,等. 无色透明耐高温聚合物光学薄膜研究与应用[J]. 新材料产业, 2014, 11:57-65. LIU J G, NI H J, ZHOU W F, et al. The research and application of optical thin film of colorless high-temperature resistant polymer[J]. Advanced Materials Industry, 2014, 11:57-65.
[79] 柴玉华,郭玉秀,卞伟,等. 柔性有机非易失性场效应晶体管存储器的研究进展[J]. 物理学报, 2014, 63(2):257-264. CHAI Y H, GUO Y X, BIAN W, et al.Progress of flexible organic non-volatile memory field-effect transistors[J]. Acta Physica Sinica, 2014, 63(2):257-264.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[5] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[6] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[7] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[13] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn