Research progress in flexible resistive random access memory materials
Da-xiu TANG1,2,3, Jin-yun LIU2,3, Yu-xin WANG1,2,3, Jie SHANG2,3,*(), Gang LIU2,3, Yi-wei LIU2,3, Hui ZHANG1, Qing-ming CHEN1, Xiang LIU1,*(), Run-wei LI2,3,*()
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
The basic structure, working principle, and the development process and research status of resistive random access memory (RRAM) were outlined. Material systems, including dielectric materials, electrode materials, and substrate materials, as well as broad trends and recent researches of flexible RRAM were summarized; the performance characteristics of flexible RRAM, including storage performance and mechanics performance, were analyzed. The significance and challenge of developing flexible RRAM were explicated. Problems existing in this area and possible approaches to the problems were also put forward. It was concluded that the highly conductive stretchable electrode and the steadily stored stretchable dielectric are primary direction in the future.
ZHANG Y , LONG S B , LIU M . The physics and industrialization prospects of RRAMs[J]. Physics, 2017, 46 (10): 645- 657.
2
AKIHITO S . Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11 (6): 28- 36.
3
SIMMONS J G , VERDERBER R R . New conduction and reversible memory phenomena in thin insulating films[J]. Proceedings the Royal of Society A, 1967, 301 (1464): 77- 102.
4
KIM S , MOON H , GUPTA D , et al. Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications[J]. IEEE Transactions on Electron Devices, 2009, 56 (4): 696- 699.
5
JEONG H Y , KIM Y I , LEE J Y , et al. A low-temperature-grown TiO2-based device for the flexible stacked RRAM application[J]. Nanotechnology, 2010, 21 (11): 115203- 115208.
6
KIM S , JEONG H Y , KIM S K , et al. Flexible memristive memory array on plastic substrates[J]. Nano Letters, 2011, 11 (12): 5438- 5442.
7
KIM S , YARIMAGA O , CHOI S J , et al. Highly durable and flexible memory based on resistance switching[J]. Solid State Electronics, 2010, 54 (4): 392- 396.
8
JEONG H Y , KIM J Y , KIM J W , et al. Graphene oxide thin films for flexible nonvolatile memory applications[J]. Nano Letters, 2010, 10 (11): 4381- 4386.
9
WANG Z Q , XU H Y , LI X H , et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance[J]. IEEE Electron Device Letters, 2011, 32 (10): 1442- 1444.
10
HU Y J , LEE J Y , CHOI S Y . Interface-engineered amorphous TiO2-based resistive memory devices[J]. Advanced Functional Materials, 2010, 20 (22): 3912- 3917.
11
CHENG C , YEH F , CHIN A . Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance[J]. Advanced Materials, 2011, 23 (7): 902- 905.
12
JANG J , PAN F , BRAAM K , et al. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications[J]. Advanced Materials, 2012, 24 (26): 3573- 3576.
13
JU Y C , KIM S , SEONG T G , et al. Resistance random access memory based on a thin film of cds nanocrystals prepared via colloidal synthesis[J]. Small, 2012, 8 (18): 2849- 2855.
14
HUANG R , TANG Y , KUANG Y , et al. Resistive switching in organic memory device based on parylene-c with highly compatible process for high-density and low-cost memory applications[J]. IEEE Transactions on Electron Devices, 2012, 59 (12): 3578- 3582.
15
HWANG S K , LEE J M , KIM S , et al. Flexible multilevel resistive memory with controlled charge trap B-and N-doped carbon nanotubes[J]. Nano Letters, 2012, 12 (5): 2217- 2221.
16
LEE B H , BAE H , SEONG H , et al. Direct observation of a carbon filament in water-resistant organic memory[J]. ACS Nano, 2015, 9 (7): 7306- 7313.
17
JANG B C , SEONG H , KIM S K , et al. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2016, 8 (20): 12951- 12958.
18
PAN L , JI Z , YI X , et al. Metal-organic framework nanofilm for mechanically flexible information storage applications[J]. Advanced Functional Materials, 2015, 25 (18): 2677- 2685.
19
ZOU S , XU P , HAMILTON M C . Resistive switching characteristics in printed CuCuO(AgO)Ag memristors[J]. Electronics Letters, 2013, 49 (13): 829- 830.
20
YOO H G , KIM S , LEE K J . Flexible one diode-one resistor resistive switching memory arrays on plastic substrates[J]. RSC Advances, 2014, 4 (38): 20017- 20023.
21
ZHAO H , TU H , WEI F , et al. High mechanical endurance RRAM based on amorphous gadolinium oxide for flexible nonvolatile memory application[J]. Journal of Physics D:Applied Physics, 2015, 48 (20): 205104- 205110.
22
YUAN F , YE Y R , WANG J C , et al. Retention behaviour of graphene oxide resistive switching memory[J]. International Journal of Nanotechnology, 2014, 11 (1/4): 106- 115.
23
ZHAO X L , WANG R , XIAO X H , et al. Flexible cation-based threshold selector for resistive switching memory integration[J]. Science China Information Sciences, 2018, 61 (6): 060413- 060420.
24
SHANG J , XUE W H , JI Z H , et al. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films[J]. Nanoscale, 2017, 9 (21): 7037- 7046.
25
MONDAL S , HER J L , KOYAMA K , et al. Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications[J]. Nanoscale Research Letters, 2014, 9 (1): 3- 10.
26
MONDAL S , CHUEH C H , PAN T M . Current conduction and resistive switching characteristics of Sm2O3 and Lu2O3thin films for low-power flexible memory applications[J]. Journal of Applied Physics, 2014, 115 (1): 014501- 014508.
27
ZOU C , ZOU C , ZHOU L , et al. Resistive switching characteristics of thin NiO film based flexible nonvolatile memory devices[J]. Microelectronic Engineering, 2012, 91 (3): 144- 146.
28
KIM S , SON J H , LEE S H , et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off[J]. Advanced Materials, 2014, 26 (44): 7480- 7487.
29
WANG G , RAJI A R O , LEE J H , et al. Conducting-interlayer SiOx memory devices on rigid and flexible substrates[J]. ACS Nano, 2014, 8 (2): 1410- 1418.
30
LYU M , LIU Y , ZHI Y , et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition[J]. Journal of the American Chemical Society, 2015, 137 (47): 15043- 15048.
31
YAMADA T , MAKIOMOTO N , SEKIGUCHI A , et al. Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices[J]. Nano Letters, 2012, 12 (9): 4540- 4545.
32
TEDESCO J L , STEPHEY L , HERNÁNDEZMORA M , et al. Switching mechanisms in flexible solution-processed TiO2 memristors[J]. Nanotechnology, 2012, 23 (30): 305206- 305212.
33
WU C , ZHANG K , WANG F , et al. Resistance switching characteristics of sputtered titanium oxide on a flexible substrate[J]. ECS Transactions, 2012, 44 (1): 87- 91.
34
LIEN D H , KAO Z K , HUANG T H , et al. All-printed paper memory[J]. ACS Nano, 2014, 8 (8): 7613- 7619.
35
YEOM S W , PARK S W , JUNG I , et al. Highly flexible titanium dioxide-based resistive switching memory with simple fabrication[J]. Applied Physics Express, 2014, 7 (10): 101801- 101804.
36
PHAM K N , DUNG HOANG V , TRAN C V , et al. TiO2 thin film based transparent flexible resistive switching random access memory[J]. Advances in Natural Sciences Nanoscience & Nanotechnology, 2016, 7 (1): 015017- 015019.
37
LIANG L , LI K , XIAO C , et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device[J]. Journal of the American Chemical Society, 2015, 137 (8): 3102- 3108.
38
JI Y , YANG Y , LEE S K , et al. Flexible nanoporous WO3-x nonvolatile memory device[J]. ACS Nano, 2016, 10 (8): 7598- 7603.
39
WU X , XU Z , YU Z , et al. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications[J]. Journal of Physics D:Applied Physics, 2015, 48 (11): 115101- 115109.
40
RAEIS H N , LEE J S . Resistive switching memory based on bioinspired natural solid polymer electrolytes[J]. ACS Nano, 2015, 9 (1): 419- 426.
41
SUN B , ZHANG X , ZHOU G , et al. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate[J]. Journal of Colloid & Interface Science, 2018, 520, 19- 24.
42
KHURANA G , MISRA P , KUMAR N , et al. Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods[J]. Journal of Physical Chemistry C, 2014, 118 (37): 21357- 21364.
43
WANG T Y , YU L J , CHEN L , et al. Atomic layer deposited Hf0.5Zr0.5O2-based flexible RRAM[J]. IEEE, 2017, 203- 206.
44
WU Z , ZHU J , ZHOU Y , et al. Bipolar Resistive Switching Properties of Hf0.5Zr0.5O2 Thin Film for Flexible Memory Applications[J]. Physica Status Solidi, 2018, 215 (1): 1700396- 1700400.
45
WU Z , ZHU J , LIU X . Resistive switching properties of HfxZr1-xO2 thin films for flexible memory applications[J]. Journal of Materials:Science Materials in Electronics, 2017, 28 (14): 10625- 10629.
46
LIU P T , CHU L W , TENG L F , et al. Transparent amorphous oxide semiconductors for system on panel applications[J]. ECS Transactions, 2013, 50 (8): 257- 268.
47
CHOI J M , KIM M S , SEOL M L , et al. Transfer of functional memory devices to any substrate[J]. Physica Status Solidi:Rapid Research Letters, 2013, 7 (5): 326- 331.
48
ALI S , BAE J , CHONG H L . Printed non-volatile resistive switches based on zinc stannate (ZnSnO3)[J]. Current Applied Physics, 2016, 16 (7): 757- 762.
49
HAO C , WEN F , XIANG J , et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications[J]. Advanced Functional Materials, 2016, 26 (12): 2016- 2024.
50
DELERUYELLE D , PUTERO M , OULED T . Ge2Sb2Te5 layer used as solid electrolyte in conductive-bridge memory devices fabricated on flexible substrate[J]. Solid State Electronics, 2013, 79 (1): 159- 165.
51
LEE K J , CHANG Y C , LEE C J , et al. Bipolar resistive switching characteristics in flexible PtMZTAl memory and NiNbO2Ni selector structure[J]. IEEE Journal of the electron devices society, 2018, 6 (1): 518- 524.
52
HAN S T , ZHOU Y , CHEN B , et al. Hybrid flexible resistive random access memory-gated transistor for novel nonvolatile data storage[J]. Small, 2016, 12 (3): 390- 396.
53
LEE K J , CHANG Y C , LEE C J , et al. Effects of Ni in strontium titanate nickelate thin films for flexible nonvolatile memory applications[J]. IEEE Transactions on Electron Devices, 2017, 64 (5): 2001- 2007.
54
WANG D T , DAI Y W , XU J , et al. Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles[J]. IEEE Electron Device Letters, 2016, 37 (7): 878- 881.
55
BEHERA B , MAITY S , KATIYAR A K , et al. High-performance flexible resistive memory devices based on Al2O3:GeOx composite[J]. Superlattices and Microstructures, 2018, 117, 298- 304.
56
KIM M , CHOI K C . Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes[J]. IEEE Transactions on Electron Devices, 2017, 64 (8): 3508- 3510.
57
PARK S , CHO K , KIM S . Memory characteristics of flexible resistive switching devices with triangular-shaped silicon nanowire bottom electrodes[J]. Semiconductor Science & Technology, 2015, 30 (5): 055019- 055021.
58
FANG R C , SUN Q Q , ZHOU P , et al. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition[J]. Nanoscale Research Letters, 2013, 8 (1): 92- 98.
59
YE C , DENG T , ZHANG J , et al. Enhanced resistive switching performance for bilayer HfO2TiO2 resistive random access memory[J]. Semiconductor Science & Technology, 2016, 31 (10): 105005- 105011.
60
TIAN H , CHEN H Y , REN T L , et al. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology[J]. Nano Letters, 2014, 14 (6): 3214- 3219.
61
SON D , CHAE S I , KIM M , et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory[J]. Advanced Materials, 2016, 28 (42): 9326- 9332.
62
DAI Y W , CHEN L , YANG W , et al. Complementary resistive switching in flexible rram devices[J]. IEEE Electron Device Letters, 2014, 35 (9): 915- 917.
63
LU J M , ZHANG Q J , HE J H , et al. Ternary flexible electro-resistive memory device based on small molecules[J]. Chemistry-An Asian Journal, 2016, 11 (10): 1624- 1630.
64
ZHU J X , ZHOU W L , WANG Z Q , et al. Flexible, transferable and conformal egg albumen based resistive switching memory devices[J]. RSC Advances, 2017, 7 (51): 32114- 32119.
65
CAI Y , TAN J , YEFAN L , et al. A flexible organic resistance memory device for wearable biomedical applications[J]. Nanotechnology, 2016, 27 (27): 275206- 275211.
66
LIN M , CHEN Q , WANG Z , et al. Flexible polymer device based on parylene-c with memory and temperature sensing functionalities[J]. Polymers, 2017, 9 (8): 310- 318.
67
CHEN Q Y , LIN M , FANG Y C , et al. Integration of biocompatible organic resistive memory and photoresistor for wearable image sensing application[J]. Science China Information Sciences, 2018, 61 (6): 060411- 060418.
68
BHANSALI U S , KHAN M A , CHA D , et al. Metal-free, single-polymer device exhibits resistive memory effect[J]. ACS Nano, 2013, 7 (12): 10518- 10524.
69
WAND T Y , HE Z Y , CHEN L , et al. An organic flexible artificial bio-synapses with long-term plasticity for neuromorphic computing[J]. Micromachines, 2018, 9 (5): 239- 246.
70
LAI Y C , HUANG Y C , LIN T Y , et al. Stretchable organic memory:toward learnable and digitized stretchable electronic applications[J]. NPG Asia Materials, 2014, 6 (2): 87- 93.
71
WANG J T , SAITO K , WU H C , et al. High-performance stretchable resistive memories using donor-acceptor block copolymers with fluorene rods and pendent isoindigo coils[J]. NPG Asia Materials, 2016, 8 (8): 298- 309.
72
HUNG C C , CHIU Y C , WU H C , et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers[J]. Advanced Functional Materials, 2017, 27 (13): 1606161- 1606170.
73
HAN S T , HU L , WANG X , et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics[J]. Advanced Science, 2017, 4 (8): 1600435- 1600441.
74
ALI S , BAE J , CHONG H L , et al. All-printed and highly stable organic resistive switching device based on graphene quantum dots and polyvinylpyrrolidone composite[J]. Organic Electronics, 2015, 25, 225- 231.
75
CHENG X F , XIANG H , JIN Z , et al. Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance[J]. Small, 2018, 14 (12): 1703667- 1703674.
76
HUANG X , ZHENG B , LIU Z , et al. Coating two-dimensional nanomaterials with metal-organic frameworks[J]. ACS Nano, 2014, 8 (8): 8695- 8701.
HE P , YE C , DENG T F , et al. Resistive switching characteristics of HfO2 based resistive random access memory (RRAM) using ITO electrode[J]. Chinese Journal of Rare Metals, 2016, 40 (3): 236- 242.
LIU J G , NI H J , ZHOU W F , et al. The research and application of optical thin film of colorless high-temperature resistant polymer[J]. Advanced Materials Industry, 2014, 11, 57- 65.
CHAI Y H , GUO Y X , BIAN W , et al. Progress of flexible organic non-volatile memory field-effect transistors[J]. Acta Physica Sinica, 2014, 63 (2): 257- 264.