Please wait a minute...
材料工程  2019, Vol. 47 Issue (10): 1-9    DOI: 10.11868/j.issn.1001-4381.2018.001301
  综述 本期目录 | 过刊浏览 | 高级检索 |
袁颂东1,2, 杨灿星1,2, 江国栋1,2, 熊剑1,2, 艾青1,2, 黄仁忠1,2
1. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 武汉 430068;
2. 催化材料湖北省协同创新中心, 武汉 430068
Research progress in nickel-rich ternary materials for lithium-ion batteries
YUAN Song-dong1,2, YANG Can-xing1,2, JIANG Guo-dong1,2, XIONG Jian1,2, AI Qing1,2, HUANG Ren-zhong1,2
1. Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China;
2. Synergistic Innovation Center of Catalysis of Hubei Province, Wuhan 430068, China
全文: PDF(1893 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 用于锂离子电池的高镍三元材料由于成本低、能量密度高、可逆容量高、环境友好等优点,是现在以及未来车用动力电池首选正极材料。本文在综述了高镍三元材料的晶体结构特性和电化学特性的基础上,介绍了国内外主要制备方法、掺杂以及包覆等改性措施,重点讨论了不同种类包覆材料对高镍三元倍率性能、循环性能和高温稳定性能的影响。最后,针对高镍三元电解液、安全性、压实密度及循环寿命等问题进行分析与展望。
E-mail Alert
关键词 锂离子电池高镍三元材料材料改性循环性能    
Abstract:Nickel-rich ternary materials for lithium ion batteries are the preferred cathode materials for automotive power batteries at present and in the future, due to their low cost, high energy density, high reversible capacity and environmental friendliness. On the basis of reviewing the crystal structure and electrochemical properties of nickel-rich ternary materials, the main preparation methods at home and abroad, modification methods such as doping, coating and others were introduced. Meanwhile, the effect of different kinds of coating materials on rate performance, cycling performance and good thermal stability of nickel-rich ternary was discussed in details. Finally, the issues about nickel-rich ternary electrolyte solution, safety, compaction density and cycle life were analyzed and prospected.
Key wordslithium-ion battery    nickel-rich ternary material    material modification    cycle performance
收稿日期: 2018-11-05      出版日期: 2019-10-12
中图分类号:  TM912.9  
通讯作者: 袁颂东(1967-),男,博士,教授,研究方向为能源材料与催化技术,联系地址:湖北省武汉市洪山区南李路28号湖北工业大学(430068),     E-mail:
袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
YUAN Song-dong, YANG Can-xing, JIANG Guo-dong, XIONG Jian, AI Qing, HUANG Ren-zhong. Research progress in nickel-rich ternary materials for lithium-ion batteries. Journal of Materials Engineering, 2019, 47(10): 1-9.
链接本文:      或
[1] 袁琦,邹正光,韩世昌,等. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1):106-113. YUAN Q, ZOU Z G,HAN S C, et al. Synthesis and electr-ochemical properties of Fe-doped V6O13 as cathode material for lithium-ion battery[J]. Journal of Materials Engineering, 2018, 46(1):106-113.
[2] MANTHIRAM A, SONG B, LI W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017(6):125-139.
[3] 董鹏,张英杰,李雪,等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11):49-57. DONG P, ZHANG Y J, LI X, et al. Fabrication and electr-ochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[4] RIEKEHR L, LIU J, SCHWARZ B, et al. Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium-nickel-cobalt-manganese-oxide cathode ceram-ics for lithium ion batteries[J]. Journal of Power Sources,2016,306:135-137.
[5] DING Y, WANG R, WANG L, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia, 2017, 105:2941-2952.
[6] ZHENG J, KAN W H, MANTHIRAM A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2(0.0≤ x ≤ 0.08) cathodes for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2015, 7(12):6926-6934.
[7] SUN H H, CHOI W, LEE J K, et al. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. Journal of Power Sources, 2015, 275:877-833.
[8] GONG J, WANG Q, SUN J. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries[J]. Thermochimica Acta, 2017, 655:176-180.
[9] PAN C C, ZHU Y R, YANG Y C, et al. Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤ x ≤ 0.8) cathode materials for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5):1396-1402.
[10] ZHOU P, ZHANG Z, MENG H, et al. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries[J]. Nanoscale, 2016, 8(46):19263-19269.
[11] DE B L, KONDRAKOV A O, GEßWEIN H, et al. Between scylla and charybdis:balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(47):26163-26171.
[12] ISHIDZU K, OKA Y, NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2[J]. Solid State Ionics, 2016, 288:176-179.
[13] ZHANG Q, SU Y, CHEN L, et al. Pre-oxidizing the precu-rsors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements[J]. Journal of Power Sources, 2018, 396:734-741.
[14] WU F, TIAN J, SU Y, et al. Effect of Ni2+ content on lith-ium/nickel disorder for Ni-rich cathode materials[J]. ACS Appl Mater Interfaces, 2015, 7(14):7702-7708.
[15] MENG K, WANG Z, GUO H, et al. Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects[J]. Electrochimica Acta, 2017, 234:99-107.
[16] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a Nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(19):8486-8493.
[17] XIAO Z, ZHANG Y, WANG Y. Synthesis of high-capacity LiNi0.8Co0.1Mn0.1O2 cathode by transition metal acetates[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1568-1574.
[18] WANG L, WU B, MU D, et al. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674:360-367.
[19] LU H, ZHOU H, SVENSSON A M, et al. High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries[J]. Solid State Ionics, 2013, 249/250:105-111.
[20] LIANG L, DU K, PENG Z, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130:82-89.
[21] MEZAAL M A, QU L, LI G, et al. High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries[J]. Journal of Solid State Electro-chemistry, 2017, 21(8):2219-2229.
[22] WU N, WU H, YUAN W, et al. Facile synthesis of one-dimen-sional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(26):13648-13652.
[23] AHN W, LIM S N, JUNG K N, et al. Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 609:143-149.
[24] HSIEH C T, HSU H H, HSU J P, et al. Infrared-assisted synthesis of lithium nickel cobalt alumina oxide powders as elect-rode material for lithium-ion batteries[J]. Electrochimica Acta, 2016, 206:207-216.
[25] LI T, LI X, WANG Z, et al. A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries:A case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2[J]. Journal of Power Sources, 2017, 342:495-503.
[26] 李高锋,李智敏,向黔新,等. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9):23-30. LI G F, LI Z M, XIANG Q X, et al. Research progress of cathode materials modified by surface coating for lithium ion batteries[J]. Journal of Materials Engineering, 2018, 46(9):23-30.
[27] HUANG B, LI X, WANG Z, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8):13223-13230.
[28] XIE H, DU K, HU G, et al. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors[J]. The Journal of Physical Chemistry C, 2016, 120(6):3235-3241.
[29] LI X, XIE Z, LIU W, et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2[J]. Electrochimica Acta, 2015, 174:1122-1130.
[30] ZHU L, LIU Y, WU W, et al. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29):15156-15162.
[31] CHEN T, LI X, WANG H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling perfor-mance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Power Sources, 2018, 374:1-11.
[32] CHEN Q C, YAN G J, LUO L M, et al. Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2-yMgyO2-zFz for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7):1397-1403.
[33] EL MOFID W, IVANOV S, KONKIN A, et al. A high perfor-mance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution[J]. Journal of Power Sources, 2014, 268:414-422.
[34] TAO F, YAN X X, LIU J J, et al. Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage[J]. Electrochimica Acta, 2016, 210:548-556.
[35] WOO S G, HAN J H, KIM K J, et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2015, 153:115-121.
[36] LIANG L W, HU G R, CAO Y B, et al. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode mate-rials by a novel modification method[J]. Journal of Alloys and Compounds, 2016, 657:570-581.
[37] TANG Z F, WU R, HUANG P F, et al. Improving the electro-chemical performance of Ni-rich cathode material LiNi0.815Co0.15Al0.035O2 by removing the lithium residues and forming Li3PO4 coating layer[J]. Journal of Alloys and Compounds, 2017, 693:1157-1163.
[38] PARK K, PARK J H, CHOI B, et al. Metal phosphate-coated Ni-rich layered oxide positive electrode materials for Li-ion batteries:improved electrochemical performance and decreased Li residuals content[J]. Electrochimica Acta, 2017, 257:217-223.
[39] LIU W, TANG X, QIN M, et al. FeF3-coated LiNi0.8Co0.15Al0.05O2 cathode materials with improved electrochemical prop-erties[J]. Materials Letters, 2016, 185:96-99.
[40] LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05] O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234:201-207.
[41] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance charact-eristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013, 110:4-9.
[42] YANG C, SHAO R, MI Y, et al. Stable interstitial layer to alleviate fatigue fracture of high nickel cathode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 376:200-206.
[43] LIAO J Y, OH S M, MANTHIRAM A. Core/double-shell type gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with high capacity and long cycle life for lithium-ion B batteries[J]. ACS Appl Mater Interfaces, 2016, 8(37):24543-24549.
[44] CHOI J W, LEE J W. Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3[J]. Journal of Power Sources, 2016, 307:63-68.
[45] WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24):1801528-1801535.
[46] SHIM J H, KIM Y M, PARK M, et al. Reduced graphene oxide-wrapped nickel-rich cathode materials for lithium ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(22):18720-18729.
[47] HYUK S I, PARK K, HWAN P J. Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane[J]. Electrochimica Acta, 2017, 230:308-315.
[48] SON I H, PARK J H, PARK S, et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8(1):1561-1571.
[49] CHEN S, HE T, SU Y, et al. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(35):29732-29743.
[50] QI X, XUE Z, DU K, et al. Graphene-analogous structural MoS2 modification to improve electrochemical properties of Ni-rich layered oxide cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2018, 397:288-295.
[51] KIM H S, KIM J, KIM S, et al. Post surface treatment of LiNi0.6Co0.1Mn0.3O2 electrode with poly(4-vinylphenol) for lithium ion batteries[J]. Electrochimica Acta, 2017, 246:51-58.
[52] KIM H, KIM M G, JEONG H Y, et al. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material:nanoscale surface treatment of primary particles[J]. Nano Lett, 2015, 15(3):2111-2119.
[53] LEE Y S, SHIN W K, KANNAN A G, et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl Mater Interfaces, 2015, 7(25):13944-13951.
[54] JIANG G D, HU Z H, YUAN S D, et al.Enhanced perfor-mance of LiFePO4 originating from the synergistic effect of graphene modification and carbon coating[J]. Journal of Alloys and Compounds, 2018, 767:528-537.
[55] ZHU X, YUAN Z W, YUAN S D, et al. Hydrothermal synth-esis of red phosphorus@reduced graphene oxide nanohybrid with enhanced electrochemical performance as anode material of lithium-ion battery[J]. Applied Surface Science, 2018, 433:125-132.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[3] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[8] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[9] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[10] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[11] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[12] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[13] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[14] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[15] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持