Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 20-33    DOI: 10.11868/j.issn.1001-4381.2018.001306
  综述 本期目录 | 过刊浏览 | 高级检索 |
二硫化钼基纳米材料在电化学传感/析氢领域的研究进展
朱刚兵1,2, 张得鹏1, 钱俊娟1
1. 江苏大学 环境与安全工程学院, 江苏 镇江 212013;
2. 香港理工大学 应用生物及化学科技学系, 香港 九龙
Research advances in molybdenum dissulfide-based nanomaterials in field of electrochemical sensing/hydrogen evolution
ZHU Gang-bing1,2, ZHANG De-peng1, QIAN Jun-juan1
1. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
2. Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
全文: PDF(7391 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 作为一种新兴的二维层状过渡金属二硫化物纳米材料,二硫化钼(MoS2)纳米片具有典型的类石墨烯结构,同时,MoS2拥有极佳的电学、光学和热力学性能以及大的比表面积。这些优异性能使得MoS2在电化学传感和电化学析氢领域具有极大的潜在应用价值。近年来,对MoS2在上述两个电化学领域的研究已经受到了广泛关注,并取得了许多重大进展。在本文中,主要综述了近年来MoS2在疾病诊断、食品、药物以及环境领域的电化学分析研究进展及通过耦合其他纳米材料在电化学析氢领域的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱刚兵
张得鹏
钱俊娟
关键词 二硫化钼纳米材料电化学传感电化学析氢    
Abstract:As an emerging two-dimensional layered transition metal disulfide nanomaterial with typical graphene-like structure, molybdenum disulfide (MoS2) nanosheets have attracted wide attention due to their excellent electrical, optical and thermodynamic properties and their large specific surface area, and it is widely used in the field of electrochemistry. The research status and development trends of MoS2-based hybrid nanomaterials in the fields of electrochemical sensors for life, food, drug, environment and electrochemical hydrogen evolution reaction were reviewed.
Key wordsMoS2    nanomaterial    electrochemical sensor    electrochemical hydrogen evolution
收稿日期: 2018-11-08      出版日期: 2019-06-17
中图分类号:  O657.1  
通讯作者: 朱刚兵(1985-),男,副教授,博士,研究方向为纳米材料电化学,联系地址:江苏省镇江市学府路301号江苏大学环境与安全工程学院主A楼512室(212013),E-mail:zhgb1030@ujs.edu.cn     E-mail: zhgb1030@ujs.edu.cn
引用本文:   
朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
ZHU Gang-bing, ZHANG De-peng, QIAN Jun-juan. Research advances in molybdenum dissulfide-based nanomaterials in field of electrochemical sensing/hydrogen evolution. Journal of Materials Engineering, 2019, 47(6): 20-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001306      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/20
[1] WANG Z, ZHU W, QIU Y,et al. Biological and environmental interactions of emerging two-dimensional nanomaterials[J]. Chemical Society Reviews, 2016, 45(6):1750-1780.
[2] XU M, LIANG T, SHI M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5):3766-3798.
[3] LV R, ROBINSON J A, SCHAAK R E, et al. Transition metal dichalcogenides and beyond:synthesis, properties, and applicat-ions of single- and few-layer nanosheets[J]. Accounts of Chemical Research, 2015, 48(1):56-64.
[4] KANNAN P K, LATE D J, MORGAN H, et al. Recent developments in 2D layered inorganic nanomaterials for sensing[J]. Nanoscale, 2015, 7(32):13293-13346.
[5] DHANJAI, SINHA A, LU X, et al. Voltammetric sensing of biomolecules at carbon based electrode interfaces:a review[J]. TrAC Trends in Analytical Chemistry, 2018, 98:174-189.
[6] SINHA A, DHANJAI, JAIN R,et al. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials:a review[J]. Microchimica Acta, 2018, 185(2):89.
[7] GENG D, BO X, GUO L. Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor[J]. Sensors and Actuators B:Chemical, 2017, 244:131-141.
[8] FANG L, WANG F, CHEN Z, et al. Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic ampero-metric sensing of glucose[J]. Talanta, 2017, 167:593-599.
[9] JEONG J M, YANG M, KIM D S,et al. High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel[J]. Journal of Colloid and Interface Science, 2017, 506:379-385.
[10] PARLAK O, INCEL A, UZUN L,et al. Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electroch-emical glucose biosensors[J]. Biosensors and Bioelectronics, 2017, 89(1):545-550.
[11] WU S, HUANG H, SHANG M,et al. High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing[J]. Biosensors and Bioelectronics, 2017, 92:646-653.
[12] YANG N, CHEN X, REN T,et al. Carbon nanotube based biosensors[J]. Sensors and Actuators B:Chemical, 2015, 207:690-715.
[13] HUANG J, DONG Z, LI Y,et al. MoS2 nanosheet functiona-lized with Cu nanoparticles and its application for glucose detection[J]. Materials Research Bulletin, 2013, 48(11):4544-4547.
[14] HUANG J, HE Y, JIN J,et al. A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles[J]. Electrochimica Acta, 2014, 136:41-46.
[15] WANG T, ZHU H, ZHUO J,et al. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level[J]. Analytical Chemistry, 2013, 85(21):10289-10295.
[16] YOON J, LEE T, BAPURAO G B,et al. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure[J]. Biosensors and Bioelectronics, 2017, 93:14-20.
[17] SONG H, NI Y, KOKOT S. Investigations of an electroche-mical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis[J]. Biosensors and Bioelectronics, 2014, 56:137-143.
[18] LIN X, NI Y, KOKOT S. Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode[J]. Sensors and Actuators B:Chemical, 2016, 233:100-106.
[19] NARAYANAN T N, VUSA C S, ALWARAPPAN S. Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets[J]. Nanotechnology, 2014, 25(33):335702.
[20] MANI V, GOVINDASAMY M, CHEN S M, et al. Deter-mination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers[J]. Microchimica Acta, 2016, 183(7):2267-2275.
[21] FENG Q, DUAN K, YE X,et al. A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) function-alized graphene-MoS2 nano-flower fabricated electrochemical sensor[J]. Sensors and Actuators B:Chemical, 2014, 192:1-8.
[22] VASILESCU I, EREMIA S A, KUSKO M,et al. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor[J]. Biosensors and Bioelectronics, 2016, 75:232-237.
[23] GOVINDASAMY M, CHEN S M, MANI V,et al. Molyb-denum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk[J]. Journal of Colloid and Interface Science, 2017, 485:129-136.
[24] CHEN H Y, WANG J, MENG L,et al. Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol[J]. Chinese Chemical Letters, 2016, 27(2):231-234.
[25] YANG T, CHEN H, GE T,et al. Highly sensitive determ-ination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite[J]. Talanta, 2015, 144:1324-1328.
[26] YANG Y, ZHANG H, HUANG C,et al. Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites[J]. Biosensors and Bioelectronics, 2017, 89(1):461-467.
[27] ZHANG H, WANG T, QIU Y,et al. Electrochemical behavior and determination of baicalin on a glassy carbon electrode modified with molybdenum disulfide nano-sheets[J]. Journal of Electroanalytical Chemistry, 2016, 775:286-291.
[28] HUANG K J, WANG L, LI J, et al. Electrochemical sensing based on layered MoS2-graphene composites[J]. Sensors and Actuators B:Chemical, 2013, 178:671-677.
[29] CHEKIN F, BOUKHERROUB R, SZUNERITS S. MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma[J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 73:627-632.
[30] YANG T, CHEN H, YANG R,et al. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A[J]. Microchimica Acta, 2015, 182(15/16):2623-2628.
[31] HUANG K J, LIU Y J, LIU Y M,et al. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electroc-hemical sensing platform for bisphenol A determination[J]. Journal of Hazardous Materials, 2014, 276:207-215.
[32] WANG Y, CHEN F, YE X,et al. Photoelectrochemical imm-unosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2nanosheets[J]. Sensors and Actuators B:Chemical, 2017, 245:205-212.
[33] SU S, CAO W, ZHANG C,et al. Improving performance of MoS2-based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS2 nanosheet[J]. RSC Advances, 2016, 6(80):76614-76620.
[34] CHEN Y, PENG W C, LI X Y. Synthesis of MoS2/graphene hybrid supported Au and Ag nanoparticles with multi-functional catalytic properties[J].Nanotechnology,2017,28(20):205603.
[35] CHEN L, JI L, ZHAO J,et al. Facile exfoliation of molyb-denum disulfide nanosheets as highly efficient electrocatalyst for detection of m-nitrophenol[J]. Journal of Electroanalytical Chemistry, 2017, 801:300-305.
[36] ZHOU G, CHANG J, PU H,et al. Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device[J]. ACS Sensors, 2016, 1(3):295-302.
[37] ZHANG J Z. Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting[J].MRS Bulletin, 2011, 36(1):48-55.
[38] GRIGORIEV S A, MILLET P, FATEEV V N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers[J]. Journal of Power Sources, 2008, 177(2):281-285.
[39] SKULASON E, KARLBERG G S, ROSSMEISL J,et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode[J]. Physical Chemistry Chemical Physics, 2007, 9(25):3241-3250.
[40] XIE J, ZHANG J, LI S,et al. Controllable disorder engineering in oxygen-incorporated MoS2ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of America Chemistry Society, 2013, 135(47):17881-17888.
[41] LI W, ZHANG Z, ZHANG W,et al. MoS2 nanosheets suppo-rted on hollow carbon spheres as efficient catalysts for electrochemical hydrogen evolution reaction[J]. ACS Omega, 2017, 2(8):5087-5094.
[42] LI Y, WANG J, TIAN X,et al. Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability[J]. Nanoscale, 2016, 8(3):1676-1683.
[43] TANG Y J, WANG Y, WANG X L,et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(12):1600116.
[44] LAU T H M,LU X W,KUILHAVY J,et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution[J]. Chemical Science, 2018, 9:4769-4776.
[45] DENG J, LI H, XIAO J,et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environ-mental Science, 2015, 8(5):1594-1601.
[46] DENG J, LI H, WANG S,et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nat Commun, 2017, 8:14430.
[47] YI Y, YU X F, ZHOU W, et al. Two-dimensional black phos-phorus:synthesis, modification, properties,and applications[J]. Materials Science and Engineering:R:Reports,2017,120:1-33.
[48] TIAN B, TIAN B, SMITH B,et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353K[J]. Nat Commun, 2018, 9(1):1397.
[49] HE R, HUA J, ZHANG A,et al. Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution[J]. Nano Letters, 2017, 17(7):4311-4316.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[4] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[5] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[6] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[7] 武延泽, 王敏, 李锦丽, 赵有璟, 王怀有, 魏明. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
[8] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[9] 刘喜山, 曹博, 纪文斐, 孙军, 张胜. 二维层状无机物/硼酸锌复合体系对聚苯乙烯泡沫阻燃性能的影响[J]. 材料工程, 2019, 47(6): 101-107.
[10] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[11] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
[12] 杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
[13] 谭英梅, 曹国剑, 李双, 古乐. 球磨制备轴承珠表面自润滑涂层及其摩擦性能[J]. 材料工程, 2015, 43(9): 19-24.
[14] 李芬, 雷涛, 杨莹, 张彦平, 魏进, 杨光辉. 纳米氧化铜的制备及其室温脱除H2S的性能研究[J]. 材料工程, 2015, 43(10): 1-6.
[15] 裴立宅, 杨永, 杨连金, 裴银强, 谢义康, 蔡征宇. 一维锗酸盐纳米材料的合成及应用[J]. 材料工程, 2014, 0(1): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn