Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 152-159    DOI: 10.11868/j.issn.1001-4381.2018.001316
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
分层界面角度对CFRP层板Ⅱ型分层的影响
赵魏1,2, 王雅娜3,4,5, 王翔3,4,5
1. 北京机电工程研究所, 北京 100074;
2. 北京航空航天大学 宇航学院, 北京 100091;
3. 中国航发北京航空材料研究院 检测研究中心, 北京 100095;
4. 航空材料检测与评价北京市重点实验室, 北京 100095;
5. 中国航空发动机集团 材料检测与评价重点实验室, 北京 100095
Effect of delamination interface angle on Mode Ⅱ delamination behavior of CFRP laminates
ZHAO Wei1,2, WANG Ya-na3,4,5, WANG Xiang3,4,5
1. Beijing Electro-mechanical Engineering Institute, Beijing 100074, China;
2. School of Astronautics, Beihang University, Beijing 100091, China;
3. Aeronautical Material Testing Research Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
4. Beijing Key Laboratory of Aeronautical Material Testing and Evaluation, Beijing 100095, China;
5. Key Laboratory of Aeronautical Material Testing and Evaluation, Aero Engine Corporation of China, Beijing 100095, China
全文: PDF(5439 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 Ⅱ型层间断裂韧度是复合材料结构损伤容限设计的关键力学参数。针对5种具有不同预置分层界面的国产T300复合材料端部缺口弯曲(ENF)实验件,开展Ⅱ型分层测试,获得预嵌薄膜末端开裂的Ⅱ型层间断裂韧度GⅡc,NPC和预开裂裂纹处扩展的Ⅱ型层间断裂韧度GⅡc,PC。结果表明:5种分层界面下GⅡc,NPC均比GⅡc,PC高,并且对于GⅡc,NPC值,0°/0°分层界面的最高,0°/90°分层界面的最低;而对于GⅡc,PC值,0°/45°分层界面的最高,0°/90°分层界面的最低。同时,采用虚拟裂纹闭合技术(VCCT)模拟不同分层界面处的Ⅱ型分层扩展,获得了分层扩展过程中分层前缘应变能释放率分布,结合实验结果分析了分层界面角度对Ⅱ型断裂韧度测量值的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵魏
王雅娜
王翔
关键词 复合材料分层断裂韧度数值模拟    
Abstract:Mode Ⅱ interlaminar fracture toughness is an indispensable mechanical performance parameter for damage tolerance design of composite structure. The domestic T300 composite end notched flexure (ENF) specimens with five different delamination interfaces were tested for mode Ⅱ delamination form, mode Ⅱ interlaminar fracture toughness GⅡc,NPC corresponding to the delamination initiated at the film insert and the mode Ⅱ interlaminar fracture toughness GⅡc,PC of the delamination growing from the pre-cracking were obtained. For five delamination interfaces, the values of GⅡc,NPC are higher than that of GⅡc,PC. For GⅡc,NPC values, GⅡc,NPC of the 0°/0° interface is the highest, GⅡc,NPC of the 0°/90° interface are the lowest. For GⅡc,PC values, GⅡc,PC of the 0°/45° interface is the highest, GⅡc,PC of the 0°/90° interface is the lowest. In addition, VCCT was used to simulate the mode Ⅱ delamination process, from which the strain release energy distribution at the delamination front during propagation along different interfaces was obtained. The effect of the delamination interface on the mode Ⅱ fracture toughness was investigated combined with the experimental results.
Key wordscomposite    delamination    fracture toughness    numerical simulation
收稿日期: 2018-11-12      出版日期: 2019-09-18
中图分类号:  TB332  
基金资助: 
通讯作者: 王雅娜(1988-),女,工程师,博士,主要从事树脂基复合材料力学性能表征与测试,联系地址:北京市81信箱23分箱(100095),E-mail:wangyana198833@163.com     E-mail: wangyana198833@163.com
引用本文:   
赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
ZHAO Wei, WANG Ya-na, WANG Xiang. Effect of delamination interface angle on Mode Ⅱ delamination behavior of CFRP laminates. Journal of Materials Engineering, 2019, 47(9): 152-159.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001316      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/152
[1] SRIDHARAN S.Delamination behaviour of composites[M].Cambridge:Woodhead Publishing,2008.
[2] TAY T E.Characterization and analysis of delamination fracture in composites:an overview of developments from 1990 to 2001[J].Applied Mechanics Reviews,2003,56(1):1-32.
[3] 钟翔屿,张代军,包建文,等.热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J].材料工程,2017,45(8):55-61. ZHONG X Y,ZHANG D J,BAO J W,et al.Influence of content of toughening thermoplastic on mode-I interlaminar fracture toughness of epoxy composite reinforced by CCF800H carbon fiber[J].Journal of Materials Engineering,2017,45(8):55-61.
[4] 王雅娜,陈新文,龚愉.复合材料0°/45°层间界面Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型分层实验研究[J].航空材料学报,2018,8(6):83-88. WANG Y N,CHEN X W,GONG Y.Experimental study on delamination of composite laminates with 0°/45° interface under mode Ⅰ, mode Ⅱ and mixed-mode Ⅰ/Ⅱ loading[J].Journal of Aeronautical Materials,2018,8(6):83-88.
[5] CHOI H Y,CHANG F K.A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J].Journal of Composite Materials,1992,26(14):2134-2169.
[6] 于志成.复合材料Ⅱ型层间断裂韧性实验方法研究[J].航空材料学报,1997,17(4):54-61. YU Z C.Study on mode Ⅱ interlaminar fracture test method of composites[J].Journal of Aeronautical Materials,1997,17(4):54-61.
[7] 李亚娟,周伟,刘然,等.复合材料Ⅱ型分层损伤演化声发射监测[J].玻璃钢/复合材料,2015(1):54-58. LI Y J,ZHOU W,LIU R, et al.Acoustic emission monitoring on mode Ⅱ delamination damage evaluation of composite material[J].Fiber Reinforced Plastics/Composites,2015(1):54-58.
[8] CHAI H.Interlaminar shear fracture of laminated composites[J]. International Journal of Fracture,1990,43(2):117-131.
[9] POLAHA J J,DAVIDSON B D,HUDSON R C,PIERACCI A.Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite[J].Journal of Reinforced Plastics and Composites,1996,15(2):141-173.
[10] CHOI N S, KINLOCH A J,WILLIAMS J G.Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode Ⅰ, mode Ⅱ and mixed-mode Ⅰ/Ⅱ loading[J].Journal of Composite Materials,1999,33(1):73-100.
[11] OZDIL F, CARLSSON L A, DAVIES P.Beam analysis of angle-ply laminate end-notched flexure specimens[J].Composites Science and Technology,1998,58(12):1929-1938.
[12] TAO J X, SUN C T. Influence of ply orientation on delamination in composite laminates[J].Journal of Composite Materials,1998,32(21):1933-1947.
[13] HWANG J H, KWON O,LEE C S,et al.Interlaminar fracture and low velocity impact of carbon/epoxy composite materials[J].Mechanics of Composite Materials,2000,36(2):117-130.
[14] PEREIRA A B,MORAIS A B.Mode Ⅱ interlaminar fracture of glass/epoxy multidirectional laminates[J].Composites Part A:Applied Science and Manufacturing,2004,35(2):265-272.
[15] PEREIRA A B,MORAIS A B,MARQUES A T,et al.Mode Ⅱ interlaminar fracture of carbon/epoxy multidirectional laminates[J].Composites Science and Technology,2004,64(10/11):1653-1659.
[16] O'BRIEN T K,JOHNSTON W M,TOLAND G J.Mode Ⅱ interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material[R].NASA/TM-2010-216838,National Aeronautics and Space Administration, Langley Research Center,Virginia.
[17] SHIVAKUMAR K N, PANDURANGA R, SKUJINS J,et al.Assessment of mode-Ⅱ fracture tests for unidirectional fiber reinforced composite laminates[J].Journal of Reinforced Plastics & Composites,2015,34(23):1905-1925.
[18] OBRIEN T K.Composite interlaminar shear fracture toughness,GⅡ,c:shear measurement or sheer myth?[J].Composite Materials:Fatigue and Fracture:7th Volume,ed R Bucinell (West Conshohocken),PA:ASTM International,1998:3-18.
[19] GILLESPIE J W,CARLSSON L A,PIPES R B.Finite element analysis of the end notched flexure specimen for measuring mode Ⅱ fracture toughness[J].Composites Science and Technology,1986,27(3):177-197.
[20] MOLLÓN V,BONHOMME J, VINA J,et al.Influence of the principal tensile stresses on delamination fracture mechanisms and their associated morphology for different loading modes in carbon/epoxy composites[J].Composites Part B Engineering,2012, 43(3):1676-1680.
[21] BOLOTIN V V,BOLOTINA K S,RADIN V P,et al.Fracture toughness characteristics of laminated composites[J].Mechanics of Composite Materials,1996,32(1):14-20.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[15] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn