Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 152-159    DOI: 10.11868/j.issn.1001-4381.2018.001316
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
分层界面角度对CFRP层板Ⅱ型分层的影响
赵魏1,2, 王雅娜3,4,5, 王翔3,4,5
1. 北京机电工程研究所, 北京 100074;
2. 北京航空航天大学 宇航学院, 北京 100091;
3. 中国航发北京航空材料研究院 检测研究中心, 北京 100095;
4. 航空材料检测与评价北京市重点实验室, 北京 100095;
5. 中国航空发动机集团 材料检测与评价重点实验室, 北京 100095
Effect of delamination interface angle on Mode Ⅱ delamination behavior of CFRP laminates
ZHAO Wei1,2, WANG Ya-na3,4,5, WANG Xiang3,4,5
1. Beijing Electro-mechanical Engineering Institute, Beijing 100074, China;
2. School of Astronautics, Beihang University, Beijing 100091, China;
3. Aeronautical Material Testing Research Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
4. Beijing Key Laboratory of Aeronautical Material Testing and Evaluation, Beijing 100095, China;
5. Key Laboratory of Aeronautical Material Testing and Evaluation, Aero Engine Corporation of China, Beijing 100095, China
全文: PDF(5439 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 Ⅱ型层间断裂韧度是复合材料结构损伤容限设计的关键力学参数。针对5种具有不同预置分层界面的国产T300复合材料端部缺口弯曲(ENF)实验件,开展Ⅱ型分层测试,获得预嵌薄膜末端开裂的Ⅱ型层间断裂韧度GⅡc,NPC和预开裂裂纹处扩展的Ⅱ型层间断裂韧度GⅡc,PC。结果表明:5种分层界面下GⅡc,NPC均比GⅡc,PC高,并且对于GⅡc,NPC值,0°/0°分层界面的最高,0°/90°分层界面的最低;而对于GⅡc,PC值,0°/45°分层界面的最高,0°/90°分层界面的最低。同时,采用虚拟裂纹闭合技术(VCCT)模拟不同分层界面处的Ⅱ型分层扩展,获得了分层扩展过程中分层前缘应变能释放率分布,结合实验结果分析了分层界面角度对Ⅱ型断裂韧度测量值的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵魏
王雅娜
王翔
关键词 复合材料分层断裂韧度数值模拟    
Abstract:Mode Ⅱ interlaminar fracture toughness is an indispensable mechanical performance parameter for damage tolerance design of composite structure. The domestic T300 composite end notched flexure (ENF) specimens with five different delamination interfaces were tested for mode Ⅱ delamination form, mode Ⅱ interlaminar fracture toughness GⅡc,NPC corresponding to the delamination initiated at the film insert and the mode Ⅱ interlaminar fracture toughness GⅡc,PC of the delamination growing from the pre-cracking were obtained. For five delamination interfaces, the values of GⅡc,NPC are higher than that of GⅡc,PC. For GⅡc,NPC values, GⅡc,NPC of the 0°/0° interface is the highest, GⅡc,NPC of the 0°/90° interface are the lowest. For GⅡc,PC values, GⅡc,PC of the 0°/45° interface is the highest, GⅡc,PC of the 0°/90° interface is the lowest. In addition, VCCT was used to simulate the mode Ⅱ delamination process, from which the strain release energy distribution at the delamination front during propagation along different interfaces was obtained. The effect of the delamination interface on the mode Ⅱ fracture toughness was investigated combined with the experimental results.
Key wordscomposite    delamination    fracture toughness    numerical simulation
收稿日期: 2018-11-12      出版日期: 2019-09-18
中图分类号:  TB332  
基金资助: 
通讯作者: 王雅娜(1988-),女,工程师,博士,主要从事树脂基复合材料力学性能表征与测试,联系地址:北京市81信箱23分箱(100095),E-mail:wangyana198833@163.com     E-mail: wangyana198833@163.com
引用本文:   
赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
ZHAO Wei, WANG Ya-na, WANG Xiang. Effect of delamination interface angle on Mode Ⅱ delamination behavior of CFRP laminates. Journal of Materials Engineering, 2019, 47(9): 152-159.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001316      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/152
[1] SRIDHARAN S.Delamination behaviour of composites[M].Cambridge:Woodhead Publishing,2008.
[2] TAY T E.Characterization and analysis of delamination fracture in composites:an overview of developments from 1990 to 2001[J].Applied Mechanics Reviews,2003,56(1):1-32.
[3] 钟翔屿,张代军,包建文,等.热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J].材料工程,2017,45(8):55-61. ZHONG X Y,ZHANG D J,BAO J W,et al.Influence of content of toughening thermoplastic on mode-I interlaminar fracture toughness of epoxy composite reinforced by CCF800H carbon fiber[J].Journal of Materials Engineering,2017,45(8):55-61.
[4] 王雅娜,陈新文,龚愉.复合材料0°/45°层间界面Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型分层实验研究[J].航空材料学报,2018,8(6):83-88. WANG Y N,CHEN X W,GONG Y.Experimental study on delamination of composite laminates with 0°/45° interface under mode Ⅰ, mode Ⅱ and mixed-mode Ⅰ/Ⅱ loading[J].Journal of Aeronautical Materials,2018,8(6):83-88.
[5] CHOI H Y,CHANG F K.A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J].Journal of Composite Materials,1992,26(14):2134-2169.
[6] 于志成.复合材料Ⅱ型层间断裂韧性实验方法研究[J].航空材料学报,1997,17(4):54-61. YU Z C.Study on mode Ⅱ interlaminar fracture test method of composites[J].Journal of Aeronautical Materials,1997,17(4):54-61.
[7] 李亚娟,周伟,刘然,等.复合材料Ⅱ型分层损伤演化声发射监测[J].玻璃钢/复合材料,2015(1):54-58. LI Y J,ZHOU W,LIU R, et al.Acoustic emission monitoring on mode Ⅱ delamination damage evaluation of composite material[J].Fiber Reinforced Plastics/Composites,2015(1):54-58.
[8] CHAI H.Interlaminar shear fracture of laminated composites[J]. International Journal of Fracture,1990,43(2):117-131.
[9] POLAHA J J,DAVIDSON B D,HUDSON R C,PIERACCI A.Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite[J].Journal of Reinforced Plastics and Composites,1996,15(2):141-173.
[10] CHOI N S, KINLOCH A J,WILLIAMS J G.Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode Ⅰ, mode Ⅱ and mixed-mode Ⅰ/Ⅱ loading[J].Journal of Composite Materials,1999,33(1):73-100.
[11] OZDIL F, CARLSSON L A, DAVIES P.Beam analysis of angle-ply laminate end-notched flexure specimens[J].Composites Science and Technology,1998,58(12):1929-1938.
[12] TAO J X, SUN C T. Influence of ply orientation on delamination in composite laminates[J].Journal of Composite Materials,1998,32(21):1933-1947.
[13] HWANG J H, KWON O,LEE C S,et al.Interlaminar fracture and low velocity impact of carbon/epoxy composite materials[J].Mechanics of Composite Materials,2000,36(2):117-130.
[14] PEREIRA A B,MORAIS A B.Mode Ⅱ interlaminar fracture of glass/epoxy multidirectional laminates[J].Composites Part A:Applied Science and Manufacturing,2004,35(2):265-272.
[15] PEREIRA A B,MORAIS A B,MARQUES A T,et al.Mode Ⅱ interlaminar fracture of carbon/epoxy multidirectional laminates[J].Composites Science and Technology,2004,64(10/11):1653-1659.
[16] O'BRIEN T K,JOHNSTON W M,TOLAND G J.Mode Ⅱ interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material[R].NASA/TM-2010-216838,National Aeronautics and Space Administration, Langley Research Center,Virginia.
[17] SHIVAKUMAR K N, PANDURANGA R, SKUJINS J,et al.Assessment of mode-Ⅱ fracture tests for unidirectional fiber reinforced composite laminates[J].Journal of Reinforced Plastics & Composites,2015,34(23):1905-1925.
[18] OBRIEN T K.Composite interlaminar shear fracture toughness,GⅡ,c:shear measurement or sheer myth?[J].Composite Materials:Fatigue and Fracture:7th Volume,ed R Bucinell (West Conshohocken),PA:ASTM International,1998:3-18.
[19] GILLESPIE J W,CARLSSON L A,PIPES R B.Finite element analysis of the end notched flexure specimen for measuring mode Ⅱ fracture toughness[J].Composites Science and Technology,1986,27(3):177-197.
[20] MOLLÓN V,BONHOMME J, VINA J,et al.Influence of the principal tensile stresses on delamination fracture mechanisms and their associated morphology for different loading modes in carbon/epoxy composites[J].Composites Part B Engineering,2012, 43(3):1676-1680.
[21] BOLOTIN V V,BOLOTINA K S,RADIN V P,et al.Fracture toughness characteristics of laminated composites[J].Mechanics of Composite Materials,1996,32(1):14-20.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[3] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[4] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[5] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[6] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[7] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[8] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[9] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[12] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[13] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[14] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[15] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn