Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 121-127    DOI: 10.11868/j.issn.1001-4381.2018.001319
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PDC-SiBCN陶瓷基无线无源温度传感器的性能
余煜玺, 韩滨
厦门大学 材料学院材料科学与工程系 福建省特种先进材料重点实验室, 福建 厦门 361005
Performance of PDC-SiBCN ceramic based wireless passive temperature sensor
YU Yu-xi, HAN Bin
Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
全文: PDF(4705 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以耐高温聚合物先驱体陶瓷(PDC-SiBCN)为温敏介质材料,金属铂作为谐振腔材料,并在陶瓷表面开槽形成共面天线,制备出集开槽天线与谐振器一体的无线无源温度传感器,实现温度信息的无线无源传输。结果表明:传感器的谐振频率随测试温度的升高呈单调递减变化,PDC-SiBCN陶瓷的介电常数随温度的升高而单调增加,其中热解温度为1000℃的传感器测试温度达1100℃,具有优异的耐高温性和介温特性。同一测试温度下传感器的谐振频率随直径的增大而减小,也随热解温度的升高而降低。通过对传感器的谐振频率-温度拟合曲线进行一阶偏导得到灵敏度方程,传感器在1100℃的高温下有较高的灵敏度。传感器具有良好的循环稳定性能,在室温下实际无线传输距离达到42 mm,当测试温度为1100℃时传输距离可达8 mm,可应用于高温恶劣环境下航空发动机的温度监控。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余煜玺
韩滨
关键词 聚合物先驱体陶瓷温度传感器耐高温    
Abstract:The high temperature resistant polymer derived ceramic (PDC-SiBCN) was used as a temperature sensitive dielectric material, and metal platinum was used as a resonant cavity material, and a coplanar antenna was formed by slotting on the surface of the ceramic to fabricate a wireless passive temperature sensor integrating the slot antenna and the resonator. The sensor can realize the wireless passive transmission of temperature information. The results show that the resonant frequency of the sensor is declined monotonically with the increase of the testing temperature, the dielectric constant of PDC-SiBCN ceramic is increased monotonously with increasing temperature, and the sensor with a pyrolysis temperature of 1000℃ is tested up to 1100℃, which has excellent high temperature resistance and dielectric temperature properties. At the same test temperature, the resonant frequency of the sensor is decreased with increasing diameter and also is reduced with increasing pyrolysis temperature. The sensitivity equation is obtained by performing a first-order partial derivative of the resonant frequency-temperature fitting curve of the sensor, and the sensor has a high sensitivity at a high temperature of 1100℃. The sensor has good cycle stability, and it has an actual wireless transmission distance of 42 mm at room temperature and a transmission distance of up to 8 mm when the testing temperature is 1100℃, which can be used for temperature monitoring of aero-engine in high temperature and harsh environments.
Key wordspolymer derived ceramic    temperature sensor    high temperature resistance
收稿日期: 2018-11-13      出版日期: 2020-01-09
中图分类号:  TB332  
基金资助: 
通讯作者: 余煜玺(1974-),男,博士,教授,主要研究极端环境应用的新材料与器件,联系地址:福建省厦门市思明区思明南路422号厦门大学材料学院(361005),E-mail:yu_heart@xmu.edu.cn     E-mail: yu_heart@xmu.edu.cn
引用本文:   
余煜玺, 韩滨. PDC-SiBCN陶瓷基无线无源温度传感器的性能[J]. 材料工程, 2020, 48(1): 121-127.
YU Yu-xi, HAN Bin. Performance of PDC-SiBCN ceramic based wireless passive temperature sensor. Journal of Materials Engineering, 2020, 48(1): 121-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001319      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/121
[1] GREGORY O J, YOU T. Ceramic temperature sensors for harsh environments[J]. IEEE Sensors Journal, 2005, 5(5):833-838.
[2] FERNANDEZ A F, GUSAROV A I, BRICHARD B, et al. Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors[J]. Optical Engineering, 2002, 41(6):1246-1255.
[3] HERFURTH P, MAIER D, LUGANI L, et al. Ultrathin body InAlN/GaN HEMTs for high-temperature (600℃) electronics[J]. IEEE Electron Device Letters, 2013, 34(4):496-498.
[4] 马洪宇,黄庆安,秦明. 谐振式MEMS温度传感器设计[J]. 光学精密工程, 2010, 18(9):2022-2027. MA H Y, HUANG Q A, QIN M. Design of resonant MEMS temperature sensor[J]. Optical and Precision Engineering, 2010, 18(9):2022-2027.
[5] CAGLIANI A, FISCHER L M, LYAGER J, et al. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator[J]. Sensors and Actuators:B, 2011, 160(1):1250-1254.
[6] CHENG H, EBADI S, GONG X. A low-profile wireless passive temperature sensor using resonator/antenna integration up to 1100℃[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:369-372.
[7] 李来超,余煜玺,黄奇凡,等. PDC-SiCN陶瓷基无线无源温度传感器的制备[J]. 功能材料, 2017, 48(7):7169-7172. LI L C, YU Y X, HUANG Q F, et al. Fabrication of PDC-SiCN ceramic based wireless passive temperature sensors[J]. Journal of Functional Materials, 2017, 48(7):7169-7172.
[8] SARKAR S, GAN Z, AN L, et al. Structural evolution of polymer-derived amorphous SiBCN ceramics at high temperature[J]. The Journal of Physical Chemistry:C, 2011, 115(50):24993-25000.
[9] 谭僖,刘伟,曹腊梅,等. LaPO4涂层对C纤维增强SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2018, 46(6):106-112. TAN X, LIU W, CAO L M, et al. Effects of LaPO4 coating on properties of carbon fiber reinforced SiBCN ceramic matrix composites[J]. Journal of Materials Engineering, 2018, 46(6):106-112.
[10] MÜLLER A, GERSTEL P, BUTCHEREIT E, et al. Si/B/C/N/Al precursor-derived ceramics:synthesis, high temperature behaviour and oxidation resistance[J]. Journal of the European Ceramic Society, 2004, 24(12):3409-3417.
[11] CHEN Y, YANG X, CAO Y, et al. Effect of pyrolysis temper-ature on the electric conductivity of polymer-derived silicoboron carbonitride[J]. Journal of the European Ceramic Society, 2014, 34(10):2163-2167.
[12] HERMANN A M, WANG Y T, RAMAKRISHNAN P A, et al. Structure and electronic transport properties of Si-(B)-C-N ceramics[J]. Journal of the American Ceramic Society, 2001, 84(10):2260-2264.
[13] KUMAR N V R, PRINZ S, CAI Y, et al. Crystallization and creep behavior of Si-B-C-N ceramics[J]. Acta Materialia, 2005, 53(17):4567-4578.
[14] REN X, EBADI S, CHEN Y, et al. Characterization of SiCN ceramic material dielectric properties at high temperatures for harsh environment sensing applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(2):960-971.
[15] CHENG H, REN X, EBADI S, et al. Wireless passive temper-ature sensors using integrated cylindrical resonator/antenna for harsh-environment applications[J]. IEEE Sensors Journal, 2015, 15(3):1453-1462.
[16] LI Y, YU Y X, SAN H S, et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J]. Applied Physics Letters, 2013, 103(16):163505.
[17] YE F, ZHANG L, YIN X, et al. Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures[J]. Journal of the European Ceramic Society, 2013, 33(8):1469-1477.
[1] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[2] 葛娟, 赛力克·达尼拜, 周权, 彭峥强, 倪礼忠. 耐高温聚(间二乙炔基苯-甲基氢硅烷-苯基硅烷)树脂的合成及性能[J]. 材料工程, 2018, 46(10): 149-155.
[3] 薛刚, 李坚辉, 王磊, 史利利, 张斌, 孙明明, 张绪刚. 中温固化耐高温酚醛树脂的制备及性能[J]. 材料工程, 2016, 44(3): 35-39.
[4] 郑春满, 李效东, 余煜玺, 曹峰. 先驱体转化法制备耐高温Si-Al-C-O纤维[J]. 材料工程, 2004, 0(12): 25-28.
[5] 郑诗建, 苏正涛, 王聚渊. 耐高温热固化硅橡胶胶粘剂的研究[J]. 材料工程, 2003, 0(6): 38-40.
[6] 周述芳, 潘顺清. 航空绝缘材料发展的几个特点[J]. 材料工程, 1994, 0(2): 42-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn