Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 75-82    DOI: 10.11868/j.issn.1001-4381.2018.001320
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能
巩桂芬(), 徐阿文, 邹明贵, 邢韵, 辛浩
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator
Gui-fen GONG(), A-wen XU, Ming-gui ZOU, Yun XING, Hao XIN
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(2249 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以聚偏氟乙烯-六氟丙烯(P(VDF-HFP))、纳米羟基磷灰石(HAP)和聚乙烯-乙烯醇共聚物的磺化物(EVOH-SO3Li)为原料进行高压共混静电纺丝,制备出EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜。利用FTIR,SEM,电化学工作站和电池检测系统对隔膜进行测试分析。结果表明:EVOH-SO3Li隔膜为粗细均匀的三维网络结构,加入P(VDF-HFP)和HAP后,EVOH-SO3Li/P(VDF-HFP)/HAP复合隔膜呈现出树枝形状的三维网状结构,提高了隔膜的孔隙率和吸液率,与纯EVOH-SO3Li隔膜相比,分别提高了37.5%和91.6%。同时表现出良好的电化学性能,组装的锂离子电池的电化学稳定窗口为5.65 V,界面阻抗降至184.24 Ω,离子电导率则提高至2.686×10-3 S·cm-1;在0.5 C放电电流下循环100次后容量保持率为96.69%,与EVOH-SO3Li隔膜相比各项性能均有所提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩桂芬
徐阿文
邹明贵
邢韵
辛浩
关键词 锂离子电池隔膜聚偏氟乙烯-六氟丙烯EVOH-SO3Li纳米羟基磷灰石静电纺丝    
Abstract

EVOH-SO3Li/P(VDF-HFP)/HAP lithium ion battery separator was prepared by high-pressure blending electrospinning using polyethylene-vinyl alcohol sulfonate (EVOH-SO3Li), poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and nano hydroxyapatite (HAP) as raw materials. The performance of the separator was characterized by FTIR, SEM, electrochemical workstation and battery detection system. The results show that the EVOH-SO3Li/P(VDF-HFP) composite separator forms an uniform and dense three-dimensional network structure, and the EVOH-SO3Li/P(VDF-HFP)/HAP composite separator presents a three-dimensional network of dendritic shapes after adding P(VDF-HFP) and HAP, which improves the porosity and liquid absorption rate of the separator. Compared with the pure EVOH-SO3Li separator, the porosity and liquid absorption rate of the EVOH-SO3Li/P(VDF-HFP)/HAP composite separator are increased by 37.5% and 91.6%, respectively. Meanwhile, the excellent electrochemical performance is also exhibited. The electrochemical stability window of the assembled lithium-ion battery is 5.65 V, and the interfacial impedance is decreased to 184.24 Ω, and the ionic conductivity is increased to 2.686×10-3 S·cm-1; Lithium-ion batteries assembled with EVOH-SO3Li/P(VDF-HFP)/HAP composite separator have a capacity retention rate of 96.69% after 100 cycles at 0.5 C discharge current, the properties of EVOH-SO3Li/P(VDF-HFP)/HAP composite separator are improved compared with EVOH-SO3Li.

Key wordslithium-ion battery separator    poly(vinylidene fluoride-hexafluoropropylene)    EVOH-SO3Li    nano hydroxyapatite    electrospinning
收稿日期: 2018-11-12      出版日期: 2020-05-28
中图分类号:  TQ340.64  
基金资助:山东省自然科学基金(ZR2011EMQ014);国家自然科学基金(5160030627)
通讯作者: 巩桂芬     E-mail: ggf-hust@163.com
作者简介: 巩桂芬(1966-), 女, 教授, 博士, 主要从事纳米纤维素制备及改性、超疏水材料和锂离子电池隔膜的研究, 联系地址:黑龙江省哈尔滨市南岗区征仪路249号哈尔滨理工大学材料科学与工程学院412室(150040), E-mail:ggf-hust@163.com
引用本文:   
巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
Gui-fen GONG, A-wen XU, Ming-gui ZOU, Yun XING, Hao XIN. Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator. Journal of Materials Engineering, 2020, 48(5): 75-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001320      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/75
Fig.1  EVOH-SO3Li,EVOH-SO3Li/PVDF-HFP和EVOH-SO3Li/P(VDF-HFP)/HAP隔膜的红外图谱
Fig.2  Celgard PP(a),EVOH-SO3Li(b), EVOH-SO3Li/P(VDF-HFP)(c)和EVOH-SO3Li/P(VDF-HFP)/HAP(d)隔膜的微观形貌
Fig.3  EVOH-SO3Li/P(VDF-HFP)/HAP复合隔膜中两个不同区域下的高倍SEM图
(a)图 2(d)中区域A的SEM图;(b)图 2(d)中区域B的SEM图
Sample Porosity/% Electrolyte uptake/%
Celgard PP 40 146
EVOH-SO3Li 64 238
EVOH-SO3Li/P(VDF-HFP) 80 432
EVOH-SO3Li/P(VDF-HFP)/HAP 88 456
Table 1  Celgard PP,EVOH-SO3Li,EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP隔膜孔隙率和吸液率
Fig.4  Celgard PP,EVOH-SO3Li,EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP隔膜的电化学稳定窗口
Fig.5  Celgard PP, EVOH-SO3Li, EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP隔膜的界面阻抗
Fig.6  Celgard PP,EVOH-SO3Li,EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP复合隔膜的交流阻抗图谱
Sample Thickness/μm Rb S/cm2 η/(S·cm-1)
Celgard PP 25 5.926 3.14×0.82 2.090×10-4
EVOH-SO3Li 32 2.037 3.14×0.82 7.080×10-4
EVOH-SO3Li/P(VDF-HFP) 34 1.296 3.14×0.82 1.301×10-3
EVOH-SO3Li/P(VDF-HFP)/HAP 40 0.741 3.14×0.82 2.686×10-3
Table 2  Celgard PP,EVOH-SO3Li,EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP隔膜的物理参数
Fig.7  Celgard PP,EVOH-SO3Li,EVOH-SO3Li/P(VDF-HFP)和EVOH-SO3Li/P(VDF-HFP)/HAP复合隔膜组装锂电池的循环性能
1 邹才能, 赵群, 张国生, 等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36 (1): 1- 10.
1 ZOU C N , ZHAO Q , ZHANG G S , et al. Energy revolution:from a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36 (1): 1- 10.
2 丁宁, 杨建新. 中国化石能源生命周期清单分析[J]. 中国环境科学, 2015, 35 (5): 1592- 1600.
doi: 10.3969/j.issn.1000-6923.2015.05.041
2 DING N , YANG J X . Life cycle inventory analysis of fossil energy in China[J]. China Environmental Science, 2015, 35 (5): 1592- 1600.
doi: 10.3969/j.issn.1000-6923.2015.05.041
3 王振华, 彭代冲, 孙克宁. 锂离子电池隔膜材料研究进展[J]. 化工学报, 2018, 69 (1): 282- 294.
3 WANG Z H , PENG D C , SUN K N . Research progress of separator materials for lithium-ion batteries[J]. Journal of Chemical Industry and Engineering, 2018, 69 (1): 282- 294.
4 JIANG W , LIU Z , KONG Q , et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Soild State Ionics, 2013, 232, 44- 48.
doi: 10.1016/j.ssi.2012.11.010
5 许守平, 侯朝勇, 胡娟, 等. 储能用锂离子电池管理系统研究[J]. 电网与清洁能源, 2014, 30 (5): 70- 78.
doi: 10.3969/j.issn.1674-3814.2014.05.014
5 XU S P , HOU C Y , HU J , et al. Study on Li-ion battery management system of energy storage[J]. Power System and Clean Energy, 2014, 30 (5): 70- 78.
doi: 10.3969/j.issn.1674-3814.2014.05.014
6 LE Z D , ZHANG Y C , XIANG H F , et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, (240): 471- 475.
7 LU Z Q , TAN Y F , WAN Y M , et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014, (260): 264- 267.
8 HUANG X S . Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15 (4): 649- 662.
doi: 10.1007/s10008-010-1264-9
9 HU Y Y , LIU Z , NAM K W , et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials, 2013, 12 (12): 1130- 1136.
doi: 10.1038/nmat3784
10 邹亚囡. 动力锂电池隔膜的改性研究进展[J]. 合成树脂及塑料, 2016, 33 (6): 87- 90.
10 ZOU Y N . Research progress of modification for power lithium-ion battery membrane[J]. China Synthetic Resin and Plastic, 2016, 33 (6): 87- 90.
11 程璐, 刘福德, 宋宇飞, 等. 聚丙烯锂电池隔膜专用料的开发[J]. 工程塑料应用, 2016, 44 (11): 18- 21.
doi: 10.3969/j.issn.1001-3539.2016.11.004
11 CHENG L , LIU F D , SONG Y F , et al. Development of special PP resins for separator of lithium ion cell[J]. Negineering Plastic Application, 2016, 44 (11): 18- 21.
doi: 10.3969/j.issn.1001-3539.2016.11.004
12 MIAO Y E , ZHU G N , HOU H Q , et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, (226): 82- 86.
13 刘太奇, 马福瑞, 赵云腾. 溶液聚偏氟乙烯静电纺纤维基超高分子量聚乙烯锂电池隔膜的制备[J]. 高分子材料科学与工程, 2015, 31 (10): 128- 132.
13 LIU T Q , MA F R , ZHAO Y T . Preparation of electrospun polyvinylidene fluoride fibers based UHMPWE lithium battery separator[J]. Polymer Materials Science & Engineering, 2015, 31 (10): 128- 132.
14 DEIMEDE V , ELMASIDES C . Separators for lithium-ion batteries:a review on the production processes and recent development[J]. Energy Technology, 2015, 3 (5): 453- 468.
doi: 10.1002/ente.201402215
15 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46 (3): 7- 12.
doi: 10.3969/j.issn.1673-1433.2018.03.003
15 GONG G F , WANG L , LAN J . Electrochemical properties of EVOH-SO3Li/PET lithium ion battery separator via electrospinning[J]. Journal of Materials Engineering, 2018, 46 (3): 7- 12.
doi: 10.3969/j.issn.1673-1433.2018.03.003
16 巩桂芬, 梁杰睿. 聚多巴胺改性静电纺EVOH-SO3Li薄膜的热力性能[J]. 工程塑料应用, 2018, 45 (12): 43- 48.
16 GONG G F , LIANG J R . Thermal and mechanical properties of EVOH-SO3Li thin films modified by polydopamine[J]. Engineering Plastic Application, 2018, 45 (12): 43- 48.
17 巩桂芬, 王磊, 徐阿文. 静电纺EVOH-SO3Li/PMMA复合锂离子电池隔膜的制备及性能[J]. 复合材料学报, 2018, 35 (3): 7- 12.
17 GONG G F , WANG L , XU A W . Preparation and properties of EVOH-SO3Li/PMMA lithium-ion battery composite separator by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35 (3): 7- 12.
18 王丹.聚烯烃隔膜多巴胺改性及PVDF-HFP陶瓷隔膜制备和性能研究[D].长春: 吉林大学, 2014.
18 WANG D. Polydopamine and performance study of ceramic/PVDF-HFP separator[D]. Changchun: Jinlin University, 2014.
19 PENG X X , ZHOU L , JING B , et al. A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexaflouropropylene) gel polymer electrolyte for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2016, 20 (1): 255- 262.
doi: 10.1007/s10008-015-3030-5
20 LI H , WU D B , WU J , et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Advanced Materials, 2017, 29 (24): 1- 11.
21 厉宗洁.静电纺聚偏氟乙烯多尺度树枝结构纳米纤维的制备及其应用研究[D].天津: 天津大学, 2017.
21 LI Z J. Preparation and application of electrospun polyvinylidene fluoride multi-scale branch structure nanofibers[D]. Tianjin: Tianjin Polytechnic University, 2017.
[1] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[2] 沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
[3] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[4] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[5] 龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
[6] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[7] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[8] 龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
[9] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[10] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[11] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[12] 李甫, 康卫民, 程博闻, 费鹏飞, 董永春. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11): 56-60.
[13] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
[14] 庞晓峰, 曾红娟. 纳米羟基磷灰石粉体的生物活性的研究[J]. 材料工程, 2009, 0(4): 14-17,22.
[15] 王曙东, 尹桂波, 张幼珠, 王红卫, 蒋新建, 董智慧. 静电纺PLA管状支架的结构及其生物力学性能[J]. 材料工程, 2008, 0(10): 316-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn