Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 75-82    DOI: 10.11868/j.issn.1001-4381.2018.001320
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能
巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator
GONG Gui-fen, XU A-wen, ZOU Ming-gui, XING Yun, XIN Hao
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(2249 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以聚偏氟乙烯-六氟丙烯(P(VDF-HFP))、纳米羟基磷灰石(HAP)和聚乙烯-乙烯醇共聚物的磺化物(EVOH-SO3Li)为原料进行高压共混静电纺丝,制备出EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜。利用FTIR,SEM,电化学工作站和电池检测系统对隔膜进行测试分析。结果表明:EVOH-SO3Li隔膜为粗细均匀的三维网络结构,加入P(VDF-HFP)和HAP后,EVOH-SO3Li/P(VDF-HFP)/HAP复合隔膜呈现出树枝形状的三维网状结构,提高了隔膜的孔隙率和吸液率,与纯EVOH-SO3Li隔膜相比,分别提高了37.5%和91.6%。同时表现出良好的电化学性能,组装的锂离子电池的电化学稳定窗口为5.65 V,界面阻抗降至184.24 Ω,离子电导率则提高至2.686×10-3 S·cm-1;在0.5 C放电电流下循环100次后容量保持率为96.69%,与EVOH-SO3Li隔膜相比各项性能均有所提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩桂芬
徐阿文
邹明贵
邢韵
辛浩
关键词 锂离子电池隔膜聚偏氟乙烯-六氟丙烯EVOH-SO3Li纳米羟基磷灰石静电纺丝    
Abstract:EVOH-SO3Li/P(VDF-HFP)/HAP lithium ion battery separator was prepared by high-pressure blending electrospinning using polyethylene-vinyl alcohol sulfonate (EVOH-SO3Li), poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and nano hydroxyapatite (HAP) as raw materials. The performance of the separator was characterized by FTIR, SEM, electrochemical workstation and battery detection system. The results show that the EVOH-SO3Li/P(VDF-HFP) composite separator forms an uniform and dense three-dimensional network structure, and the EVOH-SO3Li/P(VDF-HFP)/HAP composite separator presents a three-dimensional network of dendritic shapes after adding P(VDF-HFP) and HAP, which improves the porosity and liquid absorption rate of the separator. Compared with the pure EVOH-SO3Li separator, the porosity and liquid absorption rate of the EVOH-SO3Li/P(VDF-HFP)/HAP composite separator are increased by 37.5% and 91.6%, respectively. Meanwhile, the excellent electrochemical performance is also exhibited. The electrochemical stability window of the assembled lithium-ion battery is 5.65 V, and the interfacial impedance is decreased to 184.24 Ω, and the ionic conductivity is increased to 2.686×10-3 S·cm-1; Lithium-ion batteries assembled with EVOH-SO3Li/P(VDF-HFP)/HAP composite separator have a capacity retention rate of 96.69% after 100 cycles at 0.5 C discharge current, the properties of EVOH-SO3Li/P(VDF-HFP)/HAP composite separator are improved compared with EVOH-SO3Li.
Key wordslithium-ion battery separator    poly(vinylidene fluoride-hexafluoropropylene)    EVOH-SO3Li    nano hydroxyapatite    electrospinning
收稿日期: 2018-11-12      出版日期: 2020-05-28
中图分类号:  TQ340.64  
通讯作者: 巩桂芬(1966-),女,教授,博士,主要从事纳米纤维素制备及改性、超疏水材料和锂离子电池隔膜的研究,E-mail:ggf-hust@163.com     E-mail: ggf-hust@163.com
引用本文:   
巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
GONG Gui-fen, XU A-wen, ZOU Ming-gui, XING Yun, XIN Hao. Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator. Journal of Materials Engineering, 2020, 48(5): 75-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001320      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/75
[1] 邹才能,赵群,张国生,等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36(1):1-10. ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution:from a fossil energy era to a new energy era[J]. Natural Gas Industry,2016, 36(1):1-10.
[2] 丁宁,杨建新. 中国化石能源生命周期清单分析[J]. 中国环境科学, 2015, 35(5):1592-1600. DING N, YANG J X. Life cycle inventory analysis of fossil energy in China[J]. China Environmental Science, 2015, 35(5):1592-1600.
[3] 王振华,彭代冲,孙克宁. 锂离子电池隔膜材料研究进展[J]. 化工学报, 2018, 69(1):282-294. WANG Z H, PENG D C, SUN K N. Research progress of separator materials for lithium-ion batteries[J]. Journal of Chemical Industry and Engineering, 2018, 69(1):282-294.
[4] JIANG W, LIU Z, KONG Q, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Soild State Ionics, 2013, 232:44-48.
[5] 许守平,侯朝勇,胡娟,等. 储能用锂离子电池管理系统研究[J]. 电网与清洁能源, 2014, 30(5):70-78. XU S P, HOU C Y, HU J, et al. Study on Li-ion battery management system of energy storage[J]. Power System and Clean Energy, 2014, 30(5):70-78.
[6] LE Z D, ZHANG Y C, XIANG H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013(240):471-475.
[7] LU Z Q, TAN Y F, WAN Y M, et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014(260):264-267.
[8] HUANG X S. Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4):649-662.
[9] HU Y Y, LIU Z, NAM K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials,2013, 12(12):1130-1136.
[10] 邹亚囡. 动力锂电池隔膜的改性研究进展[J]. 合成树脂及塑料, 2016, 33(6):87-90. ZOU Y N. Research progress of modification for power lithium-ion battery membrane[J]. China Synthetic Resin and Plastic, 2016,33(6):87-90.
[11] 程璐,刘福德,宋宇飞,等. 聚丙烯锂电池隔膜专用料的开发[J]. 工程塑料应用, 2016, 44(11):18-21. CHENG L, LIU F D, SONG Y F, et al. Development of special PP resins for separator of lithium ion cell[J]. Negineering Plastic Application, 2016, 44(11):18-21.
[12] MIAO Y E, ZHU G N, HOU H Q, et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries[J]. Journal of Power Sources, 2013(226):82-86.
[13] 刘太奇,马福瑞,赵云腾. 溶液聚偏氟乙烯静电纺纤维基超高分子量聚乙烯锂电池隔膜的制备[J]. 高分子材料科学与工程, 2015, 31(10):128-132. LIU T Q, MA F R, ZHAO Y T. Preparation of electrospun polyvinylidene fluoride fibers based UHMPWE lithium battery separator[J]. Polymer Materials Science & Engineering, 2015, 31(10):128-132.
[14] DEIMEDE V, ELMASIDES C. Separators for lithium-ion batteries:a review on the production processes and recent development[J]. Energy Technology, 2015, 3(5):453-468.
[15] 巩桂芬,王磊,兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3):7-12. GONG G F, WANG L, LAN J. Electrochemical properties of EVOH-SO3Li/PET lithium ion battery separator via electrospinning[J]. Journal of Materials Engineering, 2018, 46(3):7-12.
[16] 巩桂芬,梁杰睿. 聚多巴胺改性静电纺EVOH-SO3Li薄膜的热力性能[J]. 工程塑料应用, 2018, 45(12):43-48. GONG G F, LIANG J R. Thermal and mechanical properties of EVOH-SO3Li thin films modified by polydopamine[J]. Engineering Plastic Application, 2018, 45(12):43-48.
[17] 巩桂芬,王磊,徐阿文. 静电纺EVOH-SO3Li/PMMA复合锂离子电池隔膜的制备及性能[J]. 复合材料学报, 2018, 35(3):7-12. GONG G F, WANG L, XU A W. Preparation and properties of EVOH-SO3Li/PMMA lithium-ion battery composite separator by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(3):7-12.
[18] 王丹. 聚烯烃隔膜多巴胺改性及PVDF-HFP陶瓷隔膜制备和性能研究[D]. 长春:吉林大学, 2014. WANG D. Polydopamine and performance study of ceramic/PVDF-HFP separator[D]. Changchun:Jinlin University, 2014.
[19] PENG X X, ZHOU L, JING B, et al. A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexaflouropropylene) gel polymer electrolyte for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2016,20(1):255-262.
[20] LI H, WU D B, WU J, et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Advanced Materials, 2017, 29(24):1-11.
[21] 厉宗洁. 静电纺聚偏氟乙烯多尺度树枝结构纳米纤维的制备及其应用研究[D]. 天津:天津大学, 2017. LI Z J. Preparation and application of electrospun polyvinylidene fluoride multi-scale branch structure nanofibers[D]. Tianjin:Tianjin Polytechnic University, 2017.
[1] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[2] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[3] 龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
[4] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[5] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[6] 龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
[7] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[8] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[9] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[10] 李甫, 康卫民, 程博闻, 费鹏飞, 董永春. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11): 56-60.
[11] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
[12] 庞晓峰, 曾红娟. 纳米羟基磷灰石粉体的生物活性的研究[J]. 材料工程, 2009, 0(4): 14-17,22.
[13] 王曙东, 尹桂波, 张幼珠, 王红卫, 蒋新建, 董智慧. 静电纺PLA管状支架的结构及其生物力学性能[J]. 材料工程, 2008, 0(10): 316-320.
[14] 许凤兰, 李玉宝, 李吉东, 牟元华. 纳米羟基磷灰石/聚乙烯醇复合水凝胶的溶胀性[J]. 材料工程, 2005, 0(7): 15-18,22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn