Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 133-140    DOI: 10.11868/j.issn.1001-4381.2018.001334
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
形状记忆聚氨酯热力耦合变形行为实验和有限元模拟
梁志鸿, 李建, 阚前华, 康国政
西南交通大学 力学与工程学院, 成都 610031
Experiment and finite element simulation on thermo-mechanically coupled deformation behavior of shape memory polyurethane
LIANG Zhi-hong, LI Jian, KAN Qian-hua, KANG Guo-zheng
School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(5315 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在室温下对形状记忆聚氨酯进行不同应变率下的单调拉伸实验,结合红外测温仪对试样表面温度进行同步监测,研究拉伸过程中的热力耦合效应。结果表明:当应力达到屈服峰后,分子链解缠导致了屈服软化,同时分子链之间的摩擦诱发了局部化温升;随着载荷继续增加,分子链在拉伸方向优先取向导致应变硬化发生,响应的应力和温度不断升高。同时发现,屈服峰和局部化温升均随着应变率的增加而显著增加,然而材料耗散生热诱导的应变软化和应变硬化之间存在竞争机制,使得局部化塑性流动过程对应变率的敏感性降低。基于有限元软件ABAQUS建立板状试样拉伸的有限元模型,对形状记忆聚氨酯的拉伸变形进行热力耦合分析。通过比较不同时刻的塑性应变场和温度场云图发现,局部化的塑性流动和温升均从初始缺陷处萌生,并逐渐向中间移动直至扩展到整个试样。进而提取不同加载速率下的平均温升曲线与实验结果进行了对比,发现二者吻合度较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁志鸿
李建
阚前华
康国政
关键词 形状记忆聚氨酯热力耦合塑性流动局部化温升率相关    
Abstract:Monotonic tensile tests of shape memory polyurethane (SMPU) at different strain rates were carried out at room temperature, and the surface temperature of samples was monitored synchronously with the infrared thermometer to investigate the thermo-mechanical coupling effect during stretching. The results show that the post-yield softening is observed due to the disentanglement of molecular chains, after the stress approaches the yield peak, and a localized temperature rise is induced by the friction between molecular chains; with the progressive increasing of load, the strain hardening occurs due to the preferred orientation of molecular chains in the direction of stretching, which induces the stress and temperature rise increase. In the meantime, it is found that both the yield peak and localized temperature rise are increased significantly with the increase of strain rates; however, the competition exists between the strain softening induced by the dissipation heat generation and the strain hardening, making the sensitivity of localized plastic flow on the strain rate decreased. Based on the finite element software ABAQUS, the finite element model of a plate specimen was established to study the thermo-mechanically coupled behavior on the tensile deformation of SMPU. By comparing the contours of plastic strain field with that of temperature field at different moments, it is found that the forming of the localized plastic flow and temperature rise start from the initial defect and gradually move towards the middle and the expand to the entire sample, simultaneously. Furthermore, the simulated average temperature rise curves at different loading rates are in good agreement with the experimental ones.
Key wordsshape memory polyurethane    thermo-mechanical coupling    plastic flow localization    temperature rise    rate dependence
收稿日期: 2018-11-14      出版日期: 2019-10-12
中图分类号:  O34  
  O63  
通讯作者: 阚前华(1980-),男,教授,博士,研究方向为智能材料循环本构关系及其疲劳失效,联系地址:成都市二环路北一段111号西南交通大学力学与工程学院(610031),E-mail:qianhuakan@foxmail.com     E-mail: qianhuakan@foxmail.com
引用本文:   
梁志鸿, 李建, 阚前华, 康国政. 形状记忆聚氨酯热力耦合变形行为实验和有限元模拟[J]. 材料工程, 2019, 47(10): 133-140.
LIANG Zhi-hong, LI Jian, KAN Qian-hua, KANG Guo-zheng. Experiment and finite element simulation on thermo-mechanically coupled deformation behavior of shape memory polyurethane. Journal of Materials Engineering, 2019, 47(10): 133-140.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001334      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/133
[1] HU J L, CHEN S J. A review of actively moving polymers in textile applications[J]. Journal of Materials Chemistry, 2010, 20(17):3346-3355.
[2] 杨哲. 热致感应型形状记忆高分子材料的研究[J]. 高分子材料科学与工程, 1997(4):19-23. YANG Z. Study on thermal induction shape memory polymer materials[J]. Polymer Materials Science and Engineering, 1997(4):19-23.
[3] TOBUSHI H, MATSUI R, TAKEDA K, et al. Mechanical properties of shape memory materials[M]. New York:Nova Science Publishers, 2013.
[4] ADAMS G W, FARRIS R J. Latent energy of deformation of bisphenol A polycarbonate[J]. Journal of Polymer Science Part B:Polymer Physics, 1988, 26(2):433-445.
[5] PIECZYSKA E A, MAJ M, KOWALCZYK-GAJEWSKA K, et al. Mechanical and infrared thermography analysis of shape memory polyurethane[J]. Journal of Materials Engineering and Performance, 2014, 23(7):2553-2560.
[6] RITTEL D. Thermomechanical couplings and fracture of amorphous polymers[J]. European Structural Integrity Society, 2000, 27:375-382.
[7] LI J, KAN Q H, ZHANG Z B, et al. Thermo-mechanically coupled thermo-elasto visco-plastic modeling of thermo-induced shape memory polyurethane at finite deformation[J]. Acta Mechanica Solida Sinica, 2018, 31(2):141-160.
[8] PIECZYSKA E A, STASZCZAK M, MAJ M, et al. Investigation of thermal effects accompanying tensile deformation of shape memory polymer PU-SMP[J]. Measurement Automation Monitoring, 2015, 61:203-205.
[9] PIECZYSKA E A, STASZCZAK M, MAJ M, et al. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates[J]. Smart Materials and Structures, 2016, 25(8):085002.
[10] 齐德瑄. 应变局部化分析[D]. 天津:天津大学, 2010. QI D X. Strain localization analysis[D]. Tianjin:Tianjin University, 2010.
[11] ZHANG R, BAI P X, LEI D, et al. Aging-dependent strain localization in amorphous glassy polymers:from necking to shear banding[J]. International Journal of Solids and Structures, 2018, 146:203-213.
[12] LI H X, BUCKLEY C P. Evolution of strain localization in glassy polymers:a numerical study[J]. International Journal of Solids and Structures, 2009, 46(7):1607-1623.
[13] KWEON S, BENZERGA A A. On the localization of plastic flow in glassy polymers[J]. European Journal of Mechanics:A, 2013, 39(39):251-267.
[14] XIAO R, NGUYEN T D. A thermodynamic modeling approach for dynamic softening in glassy amorphous polymers[J]. Extreme Mechanics Letters, 2016, 8:70-77.
[15] SUN F Z, LI H, LEIFER K, et al. Rate effects on localized shear deformation during nanosectioning of an amorphous thermoplastic polymer[J]. International Journal of Solids and Structures, 2017, 129:40-48.
[16] PIECZYSKA E A, MAJ M, KOWALCZYK-GAJEWSKA K, et al. Thermomechanical properties of polyurethane shape memory polymer-experiment and modelling[J]. Smart Materials and Structures, 2015, 24(4):045043.
[17] CHO H, MAYER S, PÖSELT E, et al. Deformation mechanisms of thermoplastic elastomers:stress-strain behavior and constitutive modeling[J]. Polymer, 2017, 128:87-99.
[18] PIECZYSKA E A, MAJ M, GOLASI?SKI K, et al. Thermomechanical studies of yielding and strain localization phenomena of gum metal under tension[J].Materials,2018,11(567):1-13.
[19] ZHU Y L, KANG G Z, KAN Q H, et al. Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals:theory and application[J]. International Journal of Plasticity, 2016, 79:111-152.
[20] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science and Engineering:R,2018, 132:1-22.
[1] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[2] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[3] 汪洪峰, 左敦稳, 戴晟, 潘玲. 7022铝合金FSJ拼连板材残余应力和变形分析[J]. 材料工程, 2014, 0(7): 79-84.
[4] 陆璐, 王辅忠, 朱光亚, 王照旭. 钢管穿轧过程的三维热力耦合模拟[J]. 材料工程, 2010, 0(3): 66-69,73.
[5] 万玲, 彭向和, 杨运民, 陈裕泽, 尹益辉, 陈刚. 温度及温升率历史对H62及1Cr18Ni9Ti力学性能的影响[J]. 材料工程, 2003, 0(5): 40-42,25.
[6] 汪洋, 夏源明. 纤维束动态拉伸力学性能的实验研究[J]. 材料工程, 1999, 0(12): 13-15,24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn