Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 53-58    DOI: 10.11868/j.issn.1001-4381.2018.001359
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Y掺杂Mn3O4/石墨烯复合材料的电化学性能
陈乐1, 董丽敏1,2, 金鑫鑫1, 付海洋1, 李晓约1
1. 哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040;
2. 哈尔滨理工大学 工程电介质及其应用教育部重点实验室, 哈尔滨 150080
Electrochemical properties of Y doped Mn3O4/graphene composites
CHEN Le1, DONG Li-min1,2, JIN Xin-xin1, FU Hai-yang1, LI Xiao-yue1
1. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China;
2. Key Laboratory of Engineering Dielectrics and Its Application(Ministry of Education), Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(2827 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过水热法在不同反应温度、一定反应时间条件下制备用于超级电容器的Mn3O4,同时实现Y的掺杂和复合石墨烯。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学工作站对样品的形貌、结构与电化学性能进行分析,发现其与标准PDF卡89-4837相吻合,为单一相的Mn3O4,属四方晶系,空间群为I41/amd(No.141)。所制得Mn3O4为棒状颗粒。Y掺杂含量为5%时Y-Mn3O4的比电容可以达到89 F·g-1,Y-Mn3O4/石墨烯复合材料的比电容可达到267 F·g-1,并且它们的循环伏安曲线为矩形形状,说明Y的掺杂和石墨烯的负载协同提高了Mn3O4的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈乐
董丽敏
金鑫鑫
付海洋
李晓约
关键词 超级电容器Mn3O4石墨烯水热法电化学性能    
Abstract:Mn3O4 for supercapacitors was prepared by hydrothermal method at different reaction temperature and certain reaction time. Y doped and composite graphene were realized. The morph-ology, structure and electrochemical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation. The standard PDF cards 89-4837 are identical and the single phase Mn3O4 belongs to tetragonal system. The space group is I41/amd (No. 141). The prepared Mn3O4 is rod like particle. The specific capacitance of Y-Mn3O4 and Y-Mn3O4/graphene composites can reach 89 F·g-1 and 267 F·g-1 when Y content is 5%. The cyclic voltammetry curves of Y-Mn3O4/graphene composites are rectangular, indicating that Y doped and graphene loading synergistically improve the electrochemical performance of Mn3O4.
Key wordssupercapacitor    Mn3O4    graphene    hydrothermal synthesis    electrochemical property
收稿日期: 2018-11-21      出版日期: 2020-03-03
中图分类号:  TB332  
通讯作者: 董丽敏(1973-),女,教授,博士,研究方向为无机光电功能材料,联系地址:黑龙江省哈尔滨市南岗区哈尔滨理工大学材料科学与工程学院(150040),E-mail:donglimin@hrbust.edu.cn     E-mail: donglimin@hrbust.edu.cn
引用本文:   
陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
CHEN Le, DONG Li-min, JIN Xin-xin, FU Hai-yang, LI Xiao-yue. Electrochemical properties of Y doped Mn3O4/graphene composites. Journal of Materials Engineering, 2020, 48(2): 53-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001359      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/53
[1] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5):366-377.
[2] LIU C, LI F, MA L P, et al. Advanced materials for energy storage [J]. Advanced Materials, 2010, 22(8):E28-E62.
[3] 朱诗尧,李平,叶黎城,等. 基于Pt/CNTs催化剂的燃料电池Pt/buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6):27-35. ZHU S Y, LI P, YE L C, et al. Preparation and characterization of Pt/buckypaper catalytic layer based on Pt/CNTs catalyst for fuel cells [J]. Journal of Materials Engineering, 2018, 46(6):27-35.
[4] 张晴,黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5):56-63. ZHANG Q, HUANG Q Y. Novel progress on application of carbon materials as counter electrode in dye-sensitized solar cells and perovskite solar cells [J]. Journal of Materials Engineering, 2018, 46(5):56-63.
[5] LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte [J]. Journal of Solid State Chemistry, 2015, 144(1):220-223.
[6] 于美,李新杰,马玉骁,等. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5):101-111. YU M, LI X J, MA Y X, et al. Progress in research on graphene-based composite supercapacitor materials [J].Journal of Materials Engineering, 2016, 44(5):101-111.
[7] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an ultrahigh energy density [J]. Nano Letters, 2010, 10(12):4863-4868.
[8] LIU X Y, GAO Y Q, YANG G W. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes [J]. Nanoscale, 2016, 8(7):4227-4235.
[9] LE L T, ERVIN M H, QIU H, et al. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide [J]. Electrochemistry Communications, 2011, 13(4):355-358.
[10] GANGULY D, PAHARI D, DAS N S, et al. All-amorphous CNT-MnO2, nanoflaky hybrid for improved supercapacitor applications [J]. Journal of Electroanalytical Chemistry, 2016, 778:12-22.
[11] GOPALAKRISHNAN M, SRIKESH G, MOHAN A, et al. In situ, synthesis of Co3O4 /graphite nanocomposite for high-performance supercapacitor electrode applications [J]. Applied Surface Science, 2017, 403:578-583.
[12] CAUX S, GAOUA Y, LOPEZ P. A combinatorial optimisation approach to energy management strategy for a hybrid fuel cell vehicle [J]. Energy, 2017, 133:219-230.
[13] LI L, LIU E, JIAN L, et al. A doped activated carbon prepared from polyaniline for high performance supercapacitors [J]. Journal of Power Sources, 2010, 195(5):1516-1521.
[14] CHEN D, SONG M K, CHENG S, et al. Contribution of carbon fiber paper (CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor [J]. Journal of Power Sources, 2014, 248(6):1197-1200.
[15] 林生岭,曹旭,陈传祥,等. 镧掺杂钙锰氧体/聚吡咯复合物的制备、表征及其电化学性能[J]. 复合材料学报, 2010, 27(3):56-60. LIN S L, CAO X, CHEN C X, et al. Preparation and characterization of La-doped Ca manganese oxide/polypyrrole composites and its electrochemical properties [J]. Acta Materiae Compositae Sinica, 2010, 27(3):56-60.
[16] DUAN J, ZHENG Y, CHEN S, et al. Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction [J]. Chemical Communications, 2013, 49(70):7705.
[17] 陈玮,孙晓刚,蔡满园,等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119. CHEN W, SUN X G, CAI M Y, et al. Carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(10): 113-119.
[18] MAKGOPA K, RAJU K, EJIKEME P M, et al. High-performance Mn3O4 /onion-like carbon (OLC) nanohybrid pseudocapacitor: Unravelling the intrinsic properties of OLC against other carbon supports [J]. Carbon, 2017, 117:20-32.
[19] DUBAL D P, HOLZE R. All-solid-state flexible thin film supercapacitor based on Mn3O4, stacked nanosheets with gel electrolyte [J]. Energy, 2013, 51(2):407-412.
[20] HU Y, GUAN C, FENG G, et al. Flexible asymmetric supercapacitor based on structure optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density [J]. Advanced Functional Materials, 2016, 25(47):7291-7299.
[21] LIAO Q Y, LI S Y, CUI H, et al. Vertically aligned graphene@Mn3O4 nanosheets for a high performance flexible all solid state symmetric supercapacitor [J]. Journal of Materials Chemistry: A, 2016, 4(22):8830-8836.
[22] ADARAKATTI P S, GANGAIAH V K, BANKS C E, et al. One-pot synthesis of Mn3O4 /graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) [J]. Journal of Materials Science, 2018, 53(7):4961-4973.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[4] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[7] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[8] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[9] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[10] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[11] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[12] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[13] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[14] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[15] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn