Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 22-32    DOI: 10.11868/j.issn.1001-4381.2018.001369
  综述 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯及其复合材料对水中放射性核素的吸附
刘红娟1, 吴仁杰1, 谢水波2,3, 刘迎九3
1. 南华大学 核科学技术学院, 湖南 衡阳 421001;
2. 南华大学 铀矿冶生物技术国防重点学科实验室, 湖南 衡阳 421001;
3. 南华大学 污染控制与资源化技术湖南省重点实验室, 湖南 衡阳 421001
Graphene oxide and its composites for adsorption of radionuclides in water
LIU Hong-juan1, WU Ren-jie1, XIE Shui-bo2,3, LIU Ying-jiu3
1. Institute of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China;
2. Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, Hunan, China;
3. Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
全文: PDF(2858 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在核能和核技术的快速发展过程及应用中产生了大量放射性废水,其对生态环境会造成潜在的污染,因此对放射性废水处理技术的研究对保护环境有着重要的意义。氧化石墨烯及其复合材料具有比表面积高、官能团丰富、吸附能力强、化学稳定性好等优点,在放射性废水处理领域受到广泛关注。本文综述了近年来有关氧化石墨烯及其复合材料对水中放射性核素吸附的研究现状及进展,介绍了氧化石墨烯及其复合材料对放射性核素的吸附容量、吸附等温模型、吸附热力学、影响因素和吸附机理。最后分析了氧化石墨烯及其复合材料处理放射性核素在辐射稳定性和高吸附选择性等方面面临的问题和挑战,探讨了推动该类材料今后实际放射性废水处理中工程应用的重点研究方向,如完善的产业体系和积极研发相匹配的成套水处理工艺及设备等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘红娟
吴仁杰
谢水波
刘迎九
关键词 氧化石墨烯放射性核素吸附改性材料废水    
Abstract:With the rapid development and application of nuclear energy and technology, a large number of radioactive wastewater was produced, which caused potential pollution to the ecological environment. The research on radioactive wastewater treatment is of great significance to environmental protection. Graphene oxide and its composites have attracted much attention in the field of radioactive wastewater treatment because of their high specific surface area, abundant functional groups, strong adsorption capacity and good chemical stability. Recent research status and progress on adsorption of radionuclides in water by graphene oxide and its composites were reviewed. The adsorption capacity, adsorption isothermal model, adsorption thermodynamics, influencing factors and adsorption mechanism of graphene oxide and its composites for radionuclides were introduced. In the end, the problems and challenges faced by the research on graphene oxide and its composites in the treatment of radionuclides in terms of radiation stability and high adsorption selectivity were analyzed. The key research directions for promoting the application of the graphene oxide and its composites in practical radioactive wastewater treatment projects in the future were discussed, such as the perfect industrial system and actively developing a set of matching water treatment processes and equipments.
Key wordsgraphene oxide    radionuclide    adsorption    modified material    wastewater
收稿日期: 2018-11-23      出版日期: 2019-10-12
中图分类号:  O613.71  
  TB33  
通讯作者: 谢水波(1964-),男,教授,博士研究生导师,主要从事新型吸附材料在核环境治理与修复方面的研究工作,联系地址:湖南省衡阳市南华大学铀矿冶生物技术国防重点学科实验室(421001),E-mail:xiesbmr@263.net     E-mail: xiesbmr@263.net
引用本文:   
刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
LIU Hong-juan, WU Ren-jie, XIE Shui-bo, LIU Ying-jiu. Graphene oxide and its composites for adsorption of radionuclides in water. Journal of Materials Engineering, 2019, 47(10): 22-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001369      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/22
[1] WANG X X,YU S J,JIN J,et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions[J].Science Bulletin,2016,61(20):1583-1593.
[2] 曾勇. 环境核污染主要来源及其防治对策[J]. 资源节约与环保,2013(4):29-30. ZENG Y. Major sources of environmental nuclear pollution and countermeasures[J].Resources Economization & Environment Protection,2013(4):29-30.
[3] HU R,REN X,HOU G,et al. A carboxymethyl cellulose modified magnetic bentonite composite for efficient enrichment of radionuclides[J]. RSC Advances,2016,6(69):65136-65145.
[4] 杨姗也,王祥学,陈中山,等.四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J].化学进展,2018,30(增刊1):225-242. YANG S Y,WANG X X,CHEN Z S,et al. Synthesis of Fe3O4-based nanomaterials and their application in the removal of radionuclides and heavy metal ions[J].Progress in Chemistry,2018,30(Suppl 1):225-242.
[5] TANG Y Z,REEDER R J. Uranyl and arsenate cosorption on aluminum oxide surface[J]. Geochimica et Cosmochimica Acta,2009,73(10):2727-2743.
[6] SUN Y B,ZHANG R,DING C C,et al. Adsorption of U(Ⅵ) on sericite in the presence of Bacillus subtilis:a combined batch, EXAFS and modeling techniques[J]. Geochimica et Cosmo-chimica Acta,2016,180:51-65.
[7] DING C,CHENG W,SUN Y,et al. Effects of Bacillus subtilis, on the reduction of U(Ⅵ) by nano-Fe0[J]. Geochimica et Cosmochimica Acta,2015,165:86-107.
[8] GUPTA N K,SENGUPTA A,GUPTA A,et al. Biosorption-an alternative method for nuclear waste management:a critical review[J]. Journal of Environmental Chemical Engineering,2018,6(2):2159-2175.
[9] LOVLEY D R,PHILLIPS E J P,GORBY Y A,et al. Microbial reduction of uranium[J]. Nature,1991,350(6317):413-416.
[10] WANG X,LIU Y,SUN Z,et al. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes[J]. Journal of Radioanalytical & Nuclear Chemistry,2017,314(1):251-258.
[11] BANERJEE C,DUDWADKAR N,TRIPATHI S C,et al. Nano-cerium vanadate:a novel inorganic ion exchange for removal of americium and uranium from simulated aqueous nuclear waste[J]. Journal of Hazardous Materials,2014,280:63-70.
[12] RENGARAJ S,MOON S H. Kinetics of adsorption of Co(Ⅱ) removal from water and wastewater by ion exchange resins[J]. Water Research,2002,36(7):1783-1793.
[13] YUAN L Y,SUN M,LIAO X H,et al. Solvent extraction of U(Ⅵ) by trioctylphosphine oxide using a room-temperature ionic liquid[J]. Science China Chemistry,2014,57(11):1432-1438.
[14] RAO T P,METILDA P,GLADIS J M. Preconcentration techniques for uranium(Ⅵ) and thorium(Ⅳ) prior to analytical determination-an overview[J]. Talanta,2006,68(4):1047-1064.
[15] LIU X,CHENG C,XIAO C,et al. Polyaniline (PANI) modified bentonite by plasma technique for U(Ⅵ) removal from aqueous solution[J]. Applied Surface Science,2017,411:331-337.
[16] JIN Q,SU L,MONTAVON G,et al. Surface complexation modeling of U(Ⅵ) adsorption on granite at ambient/elevated temperature:experimental and XPS study[J]. Chemical Geology,2016,433:81-91.
[17] LIU H,WANG R,JIANG H,et al. Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide[J]. Journal of Radioanalytical & Nuclear Chemistry,2015,308(1):213-220.
[18] ZHAO H,LIU X,YU M,et al. A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions[J]. Industrial & Engineering Chemistry Research,2015,54(12):3101-3106.
[19] LIU H,XIE S,LIAO J,et al. Novel graphene oxide/bentonite composite for uranium(Ⅵ) adsorption from aqueous solution[J]. Journal of Radioanalytical & Nuclear Chemistry,2018,317(3):1349-1360.
[20] PETRIE B,BARDEN R,KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment:current knowledge, understudied areas and recommendations for future monitoring[J].Water Research,2015,72:3-27.
[21] WANG S,MA M,MAN W,et al. One-step facile fabrication of sea urchin-like zirconium oxide for efficient phosphate sequestration[J]. RSC Adv,2015,5:91218-91224.
[22] WANG Y Q,ZHANG Z B,LIU Y H,et al. Adsorption of U(Ⅵ) from aqueous solution by the carboxyl-mesoporous carbon[J]. Chemical Engineering Journal,2012,198/199:246-253.
[23] LI W P,HAN X Y,WANG X Y,et al. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite[J]. Chemical Engi-neering Journal,2015,279:735-746.
[24] WANG M,QIU J,TAO X,et al. Effect of pH and ionic strength on U(Ⅳ) sorption to oxidized multiwalled carbon nanotubes[J]. Journal of Radioanalytical & Nuclear Chemistry,2011,288(3):895-901.
[25] FASFOUS I I,DAWOUD J N. Uranium (Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science,2012,259(2):433-440.
[26] OUYANG J,WANG Y,LI T,et al. Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(Ⅵ) sorption[J]. Journal of Radioanalytical & Nuclear Chemistry,2018,317(3):1419-1428.
[27] WU J,TIAN K,WANG J. Adsorption of uranium (Ⅵ) by amidoxime modified multiwalled carbon nanotubes[J]. Progress in Nuclear Energy,2018,106:79-86.
[28] DUBEY S,DWIVEDI A,SILLANPAA M,et al. Single-step green synthesis of imine-functionalized carbon spheres and their application in uranium removal from aqueous solution[J]. RSC Advances,2014,4(86):46114-46121.
[29] JIN H K,LEE H I,YEON J W,et al. Removal of uranium(Ⅵ) from aqueous solutions by nanoporous carbon and its chelating polymer composite[J]. Journal of Radioanalytical & Nuclear Chemistry,2010,286(1):129-133.
[30] YUE Y F,SUN X G,MAYES R T,et al. Polymer-coated nanoporous carbons for trace seawater uranium adsorption[J]. Science China Chemistry,2013,56(11):1510-1515.
[31] HUANG G,PENG W,YANG S. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(Ⅵ) adsorption from aqueous solution[J]. Journal of Radioanalytical & Nuclear Chemistry,2018,317(2):1-8.
[32] YANG P,LIU Q,ZHANG H,et al. Phosphatidyl-assisted fabrication of graphene oxide nanosheets with multi-active sites for uranium(Ⅵ) capture[J]. Environmental Science-Nano,2018,5(7):1584-1594.
[33] BLIZNYUK V N,CONROY N A,XIE Y, et al. Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces[J]. Physical Chemistry Chemical Physics,2018,20(3):1752-1760.
[34] SUN Y,WANG Q,CHEN C,et al. Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology,2012,46(11):6020-6027.
[35] ROMANCHUK A Y,SLESAREV A S,KALMYKOV S N,et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics,2013,15(7):2321-2327.
[36] LI X,ZHAO K,YOU C,et al. Nanocomposites of polyaniline functionalized graphene oxide:synthesis and application as a novel platform for removal of Cd(Ⅱ), Eu(Ⅲ), Th(Ⅳ) and U(Ⅵ) in water[J]. Journal of Radioanalytical & Nuclear Chemistry,2018,315(3):509-522.
[37] ZONG P,WANG S,ZHAO Y,et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(Ⅵ) from aqueous solutions[J]. Chemical Engineering Journal,2013,220(11):45-52.
[38] LI Z,CHEN F,YUAN L,et al. Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal,2012,210(6):539-546.
[39] WANG C L,LI Y,LIU C L. Sorption of uranium from aqueous solutions with graphene oxide[J]. Journal of Radioanalytical & Nuclear Chemistry,2015,304(3):1017-1025.
[40] HUANG Z,LI Z,WU Q,et al. Simultaneous elimination of cationic uranium(Ⅵ) and anionic rhenium(Ⅶ) by graphene oxide-poly(ethyleneimine) macrostructures:a batch, XPS, EXAFS, and DFT combined study[J]. Environmental Science Nano,2018,5:2077-2087.
[41] LI C,SHI G Q. Functional gels based on chemically modified graphenes[J]. Advanced Materials,2014,26(24):3992-4012.
[42] SONG W,WANG X,WANG Q,et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics,2015,17(1):398-406.
[43] 杨爱丽. 氧化石墨烯-壳聚糖复合吸附剂的制备及其吸附性能[J]. 稀有金属材料与工程,2018,47(5):1583-1587. YANG A L. Preparation and adsorption properties of GO-chitosan composite adsorbent[J]. Rare Metal Materials and Engineering,2018,47(5):1583-1587.
[44] WEN T,WU X,LIU M,et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions,2014,43(20):7464-7472.
[45] VAN NOORDEN R. Moving towards a graphene world[J]. Nature,2006,442(7100):228-229.
[46] XIANG Q,YU J,JARONIEC M. Graphene-based semic-onductor photocatalysts[J]. Chemical Society Reviews,2012,41(2):782-796.
[47] BRODIE B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London,2009,149(1):249-259.
[48] STAUDENMAIER L. Verfahren zur darstellung der graph-itsäure[J]. Berichte Der Deutschen Chemischen Gesellschaft,2006,31(2):1481-1487.
[49] WILLIAM S H J,RICHARD E O. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339.
[50] WANG S,SUN H,ANG H M,et al. Adsorptive remediation of environmental pollutants using novel graphene-based nano-materials[J]. Chemical Engineering Journal,2013,226(24):336-347.
[51] KAEWMEE P,MANYAM J,OPAPRAKASIT P,et al. Effective removal of cesium by pristine graphene oxide:performance, characterizations and mechanisms[J]. RSC Advances,2017,7(61):38747-38756.
[52] SUN Y B,SHAO D D,CHEN C L,et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline[J]. Environmental Science & Technology,2013,47:9904-9910.
[53] LI D,ZHANG B,XUAN F. The sequestration of Sr(Ⅱ) and Cs(Ⅰ) from aqueous solutions by magnetic graphene oxides[J]. Journal of Molecular Liquids,2015,209:508-514.
[54] YANG H,SUN L,ZHAI J,et al. In situ controllable synthesis of magnetic prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water[J]. Journal of Materials Chemistry A,2013,2(2):326-332.
[55] KADAM A A,JANG J,LEE D S. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution[J]. Bioresource Technology,2016,216:391-398.
[56] YANG H,LI H,ZHAI J,et al. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil[J]. Chemical Engineering Journal,2014,246(16):10-19.
[57] QI H,LIU H,GAO Y. Removal of Sr(Ⅱ) from aqueous solutions using polyacrylamide modified graphene oxide composites[J]. Journal of Molecular Liquids,2015,208:394-401.
[58] HU B W,QIU M Q,HU Q Y,et al. Decontamination of Sr(Ⅱ) on magnetic polyaniline/graphene oxide composites:evidence from experimental, spectroscopic, and modeling investigation[J]. ACS Sustainable Chemistry & Engineering,2017,5:6924-6931.
[59] CHEN H,SHAO D,LI J,et al. The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide[J]. Chemical Engineering Journal,2014,254(7):623-634.
[60] LIU X,WANG X,LI J,et al. Ozonated graphene oxides as high efficient sorbents for Sr(Ⅱ) and U(Ⅵ) removal from aqueous solutions[J]. Science China Chemistry,2016,59(7):869-877.
[61] LI D,ZHANG B,XUAN F. The sorption of Eu(Ⅲ) from aqueous solutions by magnetic graphene oxides:a combined experimental and modeling studies[J]. Journal of Molecular Liquids,2015,211:203-209.
[62] YAO T,XIAO Y,WU X,et al. Adsorption of Eu(Ⅲ) on sulfonated graphene oxide:combined macroscopic and modeling techniques[J]. Journal of Molecular Liquids,2016,215:443-448.
[63] HU B,HU Q,LI X,et al. Rapid and highly efficient removal of Eu(Ⅲ) from aqueous solutions using graphene oxide[J]. Journal of Molecular Liquids,2017,229:6-14.
[64] LI F H,YANG Z,WENG H Q,et al. High efficient separation of U(Ⅵ) and Th(Ⅳ) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide[J].Chemical Engineering Journal, 2018,332:340-350.
[65] LINGAMDINNE L P,CHOI Y L,KIM I S,et al. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides[J]. Journal of Hazardous Materials,2016,326:145-156.
[66] PAN N,LI L,DING J,et al. A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(Ⅳ)/U(Ⅵ)[J]. Journal of Colloid and Interface Science,2017,508:303-312.
[67] ZHAO G,LI J,REN X,et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology,2011,45(24):10454-10462.
[68] TAN L C,LIU Q,SONG D L,et al. Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite:kinetics and thermodynamics studies[J]. New Journal of Chemistry,2015,39(4):2832-2838.
[69] LIU S J,LI S,ZHANG H X,et al. Removal of uranium(Ⅵ) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,309(2):607-614.
[70] SHAO L,ZHONG J R,REN Y M,et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium(Ⅵ) removal[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,311(1):627-635.
[71] WANG Y,WANG Z S,GU Z X,et al. Uranium(Ⅵ) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry,2015,304(3):1329-1337.
[72] ZHAO D L,CHEN L L,SUN M,et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry,2015,306(1):221-229.
[73] TAN L C,WANG J,LIU Q,et al. The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(Ⅵ) removal[J]. New Journal of Chemistry,2015,39(2):868-876.
[74] ZHAO Z W,LI J X,WEN T,et al. Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects,2015,482:258-266.
[75] HAN R,ZOU W,WANG Y,et al. Removal of uranium(Ⅵ) from aqueous solutions by manganese oxide coated zeolite:discussion of adsorption isotherms and pH effect[J]. Journal of Environmental Radioactivity,2007,93(3):127-143.
[76] LIU S J,OUYANG J X,LUO J Q,et al. Removal of uranium(Ⅵ) from aqueous solution using graphene oxide functionalized with diethylenetriaminepentaacetic phenylenediamine[J].Journal of Nuclear Science and Technology,2018,55(7):78-79.
[77] 唐振平,童克展,谢水波,等. 氧化石墨烯/膨润土复合材料对废水中铀(Ⅵ)的吸附试验研究[J]. 科学技术与工程,2018(16):175-180. TANG Z P,TONG K Z,XIE S B,et al.Experimental study on adsorption of uranium(Ⅵ) in wastewater by graphene oxide/bentonite composites[J]. Science Technology and Engineering,2018(16):175-180.
[78] ZHAO D L,GAO X,CHEN S H,et al. Interaction between U(Ⅵ) with sulfhydryl groups functionalized graphene oxides investigated by batch and spectroscopic techniques[J]. Journal of Colloid and Interface Science,2018,524:129-138.
[79] SUN Y,YANG S,CHEN Y,et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides:a combined experimental and theoretical study[J]. Environmental Science & Technology,2015,49(7):4255-4262.
[80] WANG Y N,LIU X,HUANG Y S,et al. Interaction mechanisms of U(Ⅵ) and graphene oxide from the perspective of particle size distribution[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,311(1):209-217.
[81] WANG X, LIU Q, LIU J, et al. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution[J]. Applied Surface Science,2017,426:1063-1074.
[82] 吴鹏,王云,胡学文,等.四氧化三铁/氧化石墨烯纳米带复合材料对铀的吸附性能[J]. 原子能科学技术,2018,52(9):1561-1568. WU P,WANG Y,HU X W,et al. Uranium adsorption on ferroferric oxide/graphene oxide nanoribbon composite material[J]. Atomic Energy Science and Technology,2018,52(9):1561-1568.
[83] GAO Y,CHEN K,TAN X L,et al. Interaction mechanism of Re(Ⅶ) with zirconium dioxide nanoparticles archored onto reduced graphene oxides[J]. ACS Sustainable Chemistry & Engineering,2017,5(3):2163-2171.
[84] ZHAO D L,ZHANG Q,XUAN H,et al. EDTA functionalized Fe3O4/graphene oxide for efficient removal of U(Ⅵ) from aqueous solutions[J]. Journal of Colloid & Interface Science,2017,506:300-307.
[85] HU R,SHAO D D,WANG X K. Graphene oxide/polypyrrole composites for highly selective enrichment of U(Ⅵ) from aqueous solutions[J]. Polymer Chemistry,2014,5(21):6207-6215.
[86] WANG X,CHEN Z,WANG X. Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions[J].Science China Chemistry,2015,58(11):1766-1773.
[87] SONG W C,SHAO D D,LU S S,et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry,2014,57(9):1291-1299.
[88] ZHAO Y G,LI J X,ZHANG S W,et al. Efficient enrichment of uranium(Ⅵ) on amidoximated magnetite/graphene oxide composites[J]. RSC Advances,2013,3:18952-18959.
[89] ZHANG Z B,QIU Y F,DAI Y,et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310(2):547-557.
[90] DING C C,CHENG W C,SUN Y B,et al. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions,2014,43:3888-3896.
[91] 于淑君. 石墨烯基材料与环境污染物相互作用机理研究[D].合肥:中国科学技术大学,2017. YU S J. Interaction mechanism between graphene-based mat-erials and environmental pollutants[D]. Hefei:University of Science and Technology of China,2017.
[92] XIAO C L,WU Q Y,WANG C Z,et al. Quantum chemistry study of uranium(Ⅵ), neptunium(Ⅴ), and plutonium(Ⅳ,Ⅵ) complexes with preorganized tetradentate phenanthrolineamide ligands[J]. Inorganic Chemistry,2014,53(20):10846-10853.
[93] LAN J H,SHI W Q,YUAN L Y,et al. Recent advances in computational modeling and simulations on the An(Ⅲ)/Ln(Ⅲ) separation process[J]. Coordination Chemistry Reviews,2012,256(13/14):1406-1417.
[94] WU Q Y,LAN J H,WANG C Z,et al. Understanding the bonding nature of uranyl ion and functionalized craphene:a theoretical study[J]. Journal of Physical Chemistry A,2014,118(11):2149-2158.
[95] BAI Z Q,LI Z J,WANG C Z,et al. Interactions between Th(Ⅳ) and graphene oxide:experimental and density functional theoretical investigations[J]. RSC Advances,2014,4(7):3340-3347.
[96] WU Q Y,LAN J H,WANG C Z,et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide:scalar-relativistic DFT investigations[J]. Journal of Physical Chemistry A,2014,118(44):10273-10280.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[3] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[4] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[5] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[6] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[7] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[8] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[9] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[10] 赵璐婷, 张健, 李娜, 牛梅红, 平清伟. 半纤维素基磁性水凝胶的制备及其对染料吸附性能的研究[J]. 材料工程, 2020, 48(11): 85-91.
[11] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[12] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[13] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn