Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 10-18    DOI: 10.11868/j.issn.1001-4381.2018.001380
  综述 本期目录 | 过刊浏览 | 高级检索 |
纳米材料改善硝酸熔盐传蓄热性能的研究进展
武延泽1,2,3, 王敏1,2, 李锦丽1,2, 赵有璟1,2, 王怀有1,2, 魏明1,2
1. 中国科学院青海盐湖研究所 中国科学院盐湖资源综合高效利用重点实验室, 西宁 810008;
2. 青海省盐湖资源化学重点实验室, 西宁 810008;
3. 中国科学院大学, 北京 100049
Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials
WU Yan-ze1,2,3, WANG Min1,2, LI Jin-li1,2, ZHAO You-jing1,2, WANG Huai-you1,2, WEI Ming1,2
1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China;
2. Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1626 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 聚光式太阳能热发电是解决能源和环境矛盾的理想途径,传热蓄热技术是光热发电的重要环节,在此需要解决的关键问题是传热蓄热介质。熔盐作为储蓄热介质具有明显优势。国内外运行的光热电站中大多使用二元硝酸熔盐(Solar salt)与三元硝酸熔盐(Hitec),但二者传蓄热性能均欠佳,影响了太阳能的利用效率。纳米材料的独特空间结构,使其具有优异的导热性能、良好的稳定性等,将其作为添加剂引入到硝酸熔盐体系中,有望改善材料的传热蓄热等热物性能,进而提高太阳能光热利用的效率,降低发电成本。本文综述了纳米金属粒子、纳米金属氧化物、纳米碳材料和其他无机纳米材料作为添加剂掺杂到硝酸熔盐体系中的相关研究,论述了改性后熔盐热物性的变化并探讨了作用机理,以期为制备优异热性能的储能熔盐提供参考。未来的研究可重点关注热物性测试、传热机理、构效关系和工业化中试,将具有优异的传蓄热性能的硝酸熔盐应用在太阳能光热发电领域,在清洁能源开发利用方面发挥更重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武延泽
王敏
李锦丽
赵有璟
王怀有
魏明
关键词 太阳能传蓄热纳米材料熔盐热物性    
Abstract:Concentrating solar power is the ideal way to solve the conflicts between energy and environment. Heat transfer and heat storage are the key links in solar thermal power generation, while molten salt is an excellent heat transfer and heat storage medium. Most of the solar thermal power stations operating at home and abroad use binary nitrates (solar salt) and ternary nitrates (Hitec). However, their low heat transfer and heat storage performance will affect the efficiency of solar energy utilization. The unique spatial structure of nanomaterials enables it to have excellent thermal conductivity and good stability. Introducing nanomaterials as additives into the nitrate molten salt system is expected to improve the thermal properties of the material such as heat transfer and heat storage, thereby improving the efficiency of solar thermal utilization and reducing the cost of power generation. In this paper, the related studies of nano metal particles, nano metal oxides, carbon nanomaterials, and other inorganic nanomaterials as doping additives in nitrate molten salt systems were reviewed. The changes in the thermal properties of molten salts after modification were discussed and the mechanism of action was explored, which can provide references for preparation of energy storage molten salt with excellent thermal properties. In the future research, the measurement of thermophysical properties, mechanism of heat transfer, quantitative structure-activity relationship and industrial pilot will be focused on, so that nitrate molten salt with excellent heat transfer and heat storage performance can be applied in the field of solar thermal power generation, which will play a more important role in the development and utilization of clean energy.
Key wordssolar energy    heat transfer and heat storage    nanomaterial    molten salt    thermophysical property
收稿日期: 2018-11-27      出版日期: 2020-01-09
中图分类号:  O611.4  
基金资助: 
通讯作者: 王敏(1966-),女,研究员,主要从事盐湖资源综合利用及高温熔盐的制备与研究,联系地址:青海省西宁市城西区新宁路18号中科院盐湖研究所(810008),E-mail:marliy001@163.com     E-mail: marliy001@163.com;lijinli18@163.com
引用本文:   
武延泽, 王敏, 李锦丽, 赵有璟, 王怀有, 魏明. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
WU Yan-ze, WANG Min, LI Jin-li, ZHAO You-jing, WANG Huai-you, WEI Ming. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials. Journal of Materials Engineering, 2020, 48(1): 10-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001380      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/10
[1] 王志锋,原郭丰.分布式太阳能热发电技术与产业发展分析[J].中国科学院院刊,2016,31(2):182-190. WANG Z F,YUAN G F.Analysis of distributed concentrating solar power technology and industry development[J].Bulletin of Chinese Academy of Sciences,2016,31(2):182-190.
[2] 邱婷,苗晓亮,宋文佳,等.钙钛矿太阳能电池材料的研究进展[J].材料工程,2018,46(3):142-150. QIU T,MIAO X L,SONG W J,et al.Research progress on materials for perovskites solar cells[J].Journal of Materials Engineering,2018,46(3):142-150.
[3] 张宏韬,赵有璟,张萍,等.硝酸熔盐储热材料在太阳能利用中的研究进展[J].材料导报,2015,29(1):54-60. ZHANG H T,ZHAO Y J,ZHANG P,et al.Research progress of molten nitrate salts with application to solar energy utilization[J].Materials Review,2015,29(1):54-60.
[4] GAUNE-ESCARD M,HAARBERG G M.Molten salts chemistry and technology[M].Trondheim:John Wiley & Sons,Ltd,2011.
[5] FLUECKIGER S M,YANG Z,GARIMELLA S V.Review of molten-salt thermocline tank modeling for solar thermal energy storage[J].Heat Transfer Engineering,2013,34(10):787-800.
[6] SHIN B C,SANG D K,PARK W H.Ternary carbonate eutectic (lithium,sodium and potassium carbonates) for latent heat storage medium[J].Solar Energy Materials,1990,21(1):81-90.
[7] ARAKI N,MATSUURA M,MAKINO A,et al.Measurement of thermophysical properties of molten salts:mixtures of alkaline carbonate Salts[J].International Journal of Thermophysics,1988,9(6):1071-1080.
[8] WEI X,SONG M,WANG W,et al.Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J].Applied Energy,2015,156(1):306-310.
[9] JR P D M,GOSWAMI D Y.Thermal energy storage using chloride salts and their eutectics[J].Applied Thermal Engineering,2016,109:889-900.
[10] XING Y M,XU X,YUAN X G,et al.Numerical simulation of high-temperature phase change heat storage system[J].Heat Transfer-Asian Research,2002,33(1):32-41.
[11] JACOBSON D L,PONNAPPAN R.Performance of a cylindrical phase-change thermal energy storage unit[J].AIAA Journal,1982,21(5):774-780.
[12] SULEIMAN B M,GUSTAVSSON M,KARAWACKI E,et al.Thermal properties of lithium sulphate[J].Journal of Physics D,1997,30(18):2553.
[13] 彭强,丁静,魏小兰,等.硝酸熔盐体系在能源利用中的研究进展[J].现代化工,2009,29(6):17-24. PENG Q,DING J,WEI X L,et al.Research progress in application of molten nitrate salt in energy utilization[J].Modern Chemical Industry,2009,29(6):17-24.
[14] STEINMANN W D,TAMME R.Latent heat storage for solar steam systems[J].Journal of Solar Energy Engineering,2008,130:011004-1-011004-5.
[15] YANG Z,GARIMELLA S V.Thermal analysis of solar thermal energy storage in a molten-salt thermocline[J].Solar Energy,2010,84(6):974-985.
[16] LIU M,STEVEN T N H,BELL S,et al.Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies[J].Renewable & Sustainable Energy Reviews,2016,53:1411-1432.
[17] KEARNEY D,HERRMANN U,NAVA P,et al.Assessment of a molten salt heat transfer fluid in a parabolic trough solar field[J].Journal of Solar Energy Engineering,2002,125(2):293-299.
[18] CHOI S U S.Enhancing thermal conductivity of fluids with nano-particles[J].Asme Fed,1995,231(1):99-105.
[19] 任冬梅,李宗圣,郝鹏鹏.碳纳米管化学[M].北京:化学工业出版社,2013. REN D M,LI Z S,HAO P P.Chemistry of carbon nanotubes[M].Beijing:Chemical Industry Press,2013.
[20] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000(3):42-48. ZHANG Z T,LIN Y H,TANG Z L,et al.Nanometer materials & nanotechology and their application prospect[J].Journal of Materials Engineering,2000(3):42-48.
[21] TIAN H Q,WANG W L,DING J,et al.Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J].Solar Energy Materials & Solar Cells,2016,149:187-194.
[22] 汪洋,赵素芳,程进辉,等.熔盐基碳纳米流体及其制备方法:CN106957636A[P].2017-07-18.
[23] 李亚斌,吴燕.一种混合熔盐传热蓄热介质及其制备方法:CN105778870A[P].2016-11-09.
[24] WU D,LIU S.Effects of multi-walled carbon nanotubes on enhancing the thermodynamics characteristic of alkali nitrate and chlorate salt for concentration solar plants[J].Advanced Materials Research,2013,805/806:63-69.
[25] SHIN D,BANERJEE D.Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J].International Journal of Heat and Mass Transfer,2015,84:898-902.
[26] JO B,BANERJEE D.Enhanced specific heat capacity of molten salt-based nanomaterials:effects of nanoparticle dispersion and solvent material[J].Acta Materialia,2014,75(9):80-91.
[27] 姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-314. YAO S W,ZOU Y,ZHANG W G.Research progress of the properties,preparation and application of Au nanoparticles[J].Chemical Industry and Engineering Progress,2007,26(3):310-314.
[28] 彭红,刘洋,张锦胜,等.银纳米粒子材料应用研究进展[J].化工进展,2017,36(7):2525-2532. PENG H,LIU Y,ZHANG J S,et al.Progress in utilization of silver nanoparticle material[J].Chemical Industry and Engineering Progress,2017,36(7):2525-2532.
[29] 翟秀静,张楠.纳米金属材料的研究进展[J].材料导报,1999(6):22-24. ZHAI X J,ZHANG N.Research development of nanometer metal materials[J].Materials Review,1999(6):22-24.
[30] 张盛强,汪建义,王大辉,等.纳米金属材料的研究进展[J].材料导报,2011(增刊1):5-9. ZHANG S Q,WANG J Y,WANG D H,et al.Recent progress on nano metallic materials[J].Materials Review,2011(Suppl 1):5-9.
[31] 钟庆东,李永光,卓顺智,等.纳米氧化物材料研究的现状及进展[J].上海电力学院学报,2003,19(1):1-7. ZHONG Q D,LI Y G,ZHUO S Z,et al.Development and status quo of nano-oxide research in the recent decade[J]. Journal of Shanghai University of Electric Power,2003,19(1):1-7.
[32] 贾向东.纳米氧化物及其复合材料的制备与应用研究[D].南京:南京大学,2011. JIA X D.Synthesis and application of oxide nanoparticles and their composites[D].Nanjing:Nanjing University,2011.
[33] 吴健.金属氧化物微纳米结构的热力学研究[D].西安:西北大学,2011. WU J.Thermodynamics of metal oxide micro-nanostructures[D].Xi'an:Nothwestern Polytechnical University,2011.
[34] 周艳,张金辉,王艳,等.纳米金属粒子强化正十八烷相变传热性能的实验研究[J].材料导报,2013,27(12):8-11. ZHOU Y,ZHANG J H,WANG Y,et al.Experimental research on performance of metal nano-particle enhancing octadecane phase-change heat transfer[J].Materials Review,2013,27(12):8-11.
[35] HOSSAIN N,AFRIN S,ORTEGA J D,et al.Numerical analysis of total energy storage of nanofluidized heat transfer fluid in thermocline thermal energy storage system[C]//8th International Conference on Energy Sustainability.USA:Boston,2014.
[36] MADATHIL P K,BALAGI N,SAHA P,et al.Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J].Applied Thermal Engineering,2016,109:901-905.
[37] 吴迪.基于太阳能热发电系统的纳米颗粒提升熔盐储热特性的研究[D].北京:华北电力大学,2014. WU D.Effects of nanoparticles on enhancing the thermodynamics characteristic of molten salt for solar thermal power system[D].Beijing:North China Electric Power University,2014.
[38] CHIERUZZI M,CERRITELLI G F,MILIOZZI A,et al.Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J].Nanoscale Research Letters,2013,8:448(1)-448(9).
[39] SHIN D,BANERJEE D.Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J].International Journal of Heat & Mass Transfer,2014,74(5):210-214.
[40] LU M C,HUANG C H.Specific heat capacity of molten salt-based alumina nanofluid[J].Nanoscale Research Letters,2013,8:292(1)-292(7).
[41] 吴玉庭,李英,马重芳.一种低熔点二元硝酸混合熔盐纳米流体:CN107033852A[P].2017-08-11.
[42] 吴玉庭,张璐迪,马重芳,等.一种低熔点纳米熔盐传热蓄热介质及制备方法:CN105222477A[P].2016-01-06.
[43] 曾智勇.二元硝酸纳米熔盐传热蓄热介质及其制备方法:CN103911121A[P].2014-07-09.
[44] 曾智勇.一种三元硝酸纳米熔盐传热蓄热介质及其制备方法与应用:CN103881662A[P].2014-06-25.
[45] 曾智勇.多元硝酸纳米熔盐传热蓄热介质及其制备方法与应用:CN103881663A[P].2014-06-25.
[46] KROTO H W,HEATH J R,O'BRIEN S C,et al.C60:buckminsterfullerene[J].Nature,1985,318(6042):162-163.
[47] LIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
[48] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[49] 张晴,黄其煜.碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J].材料工程,2018,46(5):56-63. ZHANG Q,HUANG Q Y.Novel progress on application of Carbon materials as counter electrode in dye-sensitized solar cells and perovskite solar cells[J].Journal of Materials Engineering,2018,46(5):56-63.
[50] 高晓晴,郭全贵,刘朗,等.高导热炭材料的研究进展[J].功能材料,2006,37(2):173-177. GAO X J,GUO Q G,LIU L,et al.The study progress on carbon materials with high thermal conductivity[J].Functional Materials,2006,37(2):173-177.
[51] HUANG X,YIN Z Y,WU S X,et al.Graphene-based materials:synthesis,characterization,properties,and applications[J].Small,2011,7(14):1876-1902.
[52] 陈壹华.碳纳米材料制备方法及其应用特性[J].炭素技术,2008,27(6):28-32. CHEN Y H.Manufacturing methods and application characters of carbon nano-materials[J].Carbon Techniques,2008,27(6):28-32.
[53] 何鹏,耿慧远.先进热管理材料研究进展[J].材料工程,2018,46(4):1-11. HE P,GENG H Y.Research Progress of Advanced Thermal Management Materials[J].Journal of Materials Engineering,2018,46(4):1-11.
[54] 赵倩,王俊勃,宋宇宽,等.熔融盐高储热材料的研究进展[J].无机盐工业,2014,46(11):5-8. ZHAO Q,WANG J B,SONG Y K,et al.Research progress in high heat storage material of molten salt[J].Inorganic Chemicals Industry,2014, 46(11):5-8.
[55] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[56] KIM P,SHI L,MAJUMDAR A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215502(1)-215502(4).
[57] 周春玉,曾亮,吉莉,等.石墨烯及其复合材料导热性能的研究现状[J].材料开发与应用,2010,25(6):94-100. ZHOU C Y,ZENG L,JI L,et al.Research on the thermal conductivities of graphene and graphene based composite materials[J].Development and Application of Materials,2010,25(6):94-100.
[58] HAJJAR Z,RASHIDI A M,GHOZATLOO A.Enhanced thermal conductivities of graphene oxide nanofluids[J].International Communications in Heat & Mass Transfer,2014,57:128-131.
[59] 徐仰涛,王万平,夏天东,等.几种石墨在熔融Solar Salt中的热腐蚀行为[J].兰州理工大学学报,2015,41(2):7-11. XU Y T,WANG W P,XIA T D,et al.Hot-corrosion behavior of several kinds of graphite in molten solar salt[J].Journal of Lanzhou University of Technology,2015,41(2):7-11.
[60] 张桂兰,党锡江.细结构石墨在熔融Solar salt中的热腐蚀行为[J].炭素技术,2015,34(6):46-49. ZHANG G L,DANG X J.Heat resistant corrosion of fine structure graphite in molten Solar salt[J].Carbon Techniques,2015,34(6):46-49.
[61] ACEM Z,LOPEZ J,BARRIO E P D.KNO3/NaNO3-graphite materials for thermal energy storage at high temperature:Part I-elaboration methods and thermal properties[J].Applied Thermal Engineering,2010,30(13):1580-1585.
[62] LOPEZ J,ACEM Z,BARRIO E P D.KNO3/NaNO3-graphite materials for thermal energy storage at high temperature:Part Ⅱ-phase transition properties[J].Applied Thermal Engineering,2010,30(13):1586-1593.
[63] 郭茶秀,胡高林,罗志军.石墨泡沫/共晶盐复合相变材料的制备及其热物性[J].新型炭材料,2015,30(3):262-268. GUO C X,HU G L,LUO Z J.Preparation and thermal properties of graphite foam/eutectic salt composite as a phase change energy storage material[J].New Carbon Materials,2015,30(3):262-268.
[64] 郭茶秀.硝酸熔盐在石墨泡沫内的流动性能分析[J].新能源进展,2017,5(2):117-121. GUO C X.Flow characteristics of molten salt in graphite foam[J].Advances in New and Renewable Energy,2017,5(2):117-121.
[65] 刘义林,高原,鲍建设,等.功能化石墨烯掺杂熔盐的制备及性能研究[J].无机盐工业,2016,48(7):16-20. LIU Y L,GAO Y,BAO J S,et al.Studies on preparation and properties of functionalizing graphene doped molten salt composites[J].Inorganic Chemicals Industry,2016,48(7):16-20.
[66] 李月锋,张东.水溶液法制备NaNO3-LiNO3/石墨复合高温相变材料研究[J].功能材料,2013,44(10):1451-1456. LI Y F,ZHANG D.Study on high-temperature phase change composites of NaNO3-LiNO3/expanded graphite by saturated water solution method[J].Functional Materials,2013,44(10):1451-1456.
[67] 张焘,曾亮,张东.膨胀石墨、石墨烯改善无机盐相变材料热物性能[J].无机盐工业,2010,42(5):24-26. ZHANG T,ZENG L,ZHANG D.Improvement of thermal properties of hybrid inorganic salt phase change materials by expanded graphite and graphene[J].Inorganic Chemicals Industry,2010,42(5):24-26.
[68] WU Y Z,LI J L,WANG M,et al.Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP[J].RSC Advances,2018,8,19251-19260.
[69] XIE Q Z,ZHU Q Z,YAN L.Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets[J].Nanoscale Research Letters,2016,11(1):1-7.
[70] 谢强志,朱群志.掺杂石墨烯纳米片对硝酸熔盐比热容的影响[J].上海电力学院学报,2017,33(3):285-288. XIE Q Z,ZHU Q Z.Specific heat capacity of molten nitrate salt-based graphene nanoplatelets nanofluids[J].Journal of Shanghai University of Electric Power,2017,33(3):285-288.
[71] 郑叶芳.一种纳米氮化铝改性熔盐及其制备方法:CN105154029A[P].2015-12-16.
[72] SEO J,SHIN D.Enhancement of specific heat of ternary nitrate (LiNO3-NaNO3-KNO3) salt by doping with SiO2 nanoparticles for solar thermal energy storage[J].Micro & Nano Letters Iet,2014,9(11):817-820.
[73] DEVARADJANE R,SHIN D.Enhanced heat capacity of molten salt nano-materials for concentrated solar power application[C]//International Mechanical Engineering Congress and Exposition.USA:Houston,2012.
[74] DUDDA B,SHIN D.Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J].International Journal of Thermal Sciences,2013,69(7):37-42.
[75] TIZNOBAIK H,SHIN D.Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J].International Journal of Heat & Mass Transfer,2013,57(2):542-548.
[76] 桑丽霞,刘太.熔盐纳米流体比热容强化的研究[J].工程热物理学报,2017(8):1736-1742. SANG L X,LIU T.Study on the enhanced specific heat capacity of molten salt nanofluid[J].Journal of Engineering Thermophysics,2017(8):1736-1742.
[77] QIAO G,ALEXIADIS A,DING Y.Simulation study of anomalous thermal properties of molten nitrate salt[J].Powder Technology,2017,314:660-664.
[78] SHIN D,BANERJEE D.Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J].International Journal of Heat & Mass Transfer,2011,54(5/6):1064-1070.
[1] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[2] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[3] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[4] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[5] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[6] 应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进. 碳材料在钙钛矿太阳能电池中的应用[J]. 材料工程, 2019, 47(6): 1-10.
[7] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[8] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[9] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
[10] 张晴, 黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5): 56-63.
[11] 邱婷, 苗晓亮, 宋文佳, 楼冬, 张树芳. 钙钛矿太阳能电池材料的研究进展[J]. 材料工程, 2018, 46(3): 142-150.
[12] 杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
[13] 李智敏, 李钊颖, 张茂林, 王媛, 黄云霞. 量子点敏化太阳能电池光阳极的研究进展[J]. 材料工程, 2017, 45(8): 132-138.
[14] 谭毅, 秦世强, 石爽, 姜大川, 李鹏廷, 李佳艳. 太阳能级硅中轻质元素(C,N,O)研究进展[J]. 材料工程, 2017, 45(2): 112-118.
[15] 张凌云, 贾若琨, 孙旭辉, 张瑛洁, 刘春光. NH3气氛下N掺杂ZnO的制备及光电性能[J]. 材料工程, 2015, 43(4): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn