Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 26-33    DOI: 10.11868/j.issn.1001-4381.2018.001388
  综述 本期目录 | 过刊浏览 | 高级检索 |
金属基超疏水表面的制备及性能研究进展
张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦
兰州交通大学 材料科学与工程学院, 兰州 730070
Research progress in preparation and properties of superhydrophobic surface on metal substrates
ZHANG Zhi-bin, YU Xiao-feng, WANG Hai-tao, SHI Xue-ting, FENG Li-bang
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(5563 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了金属基超疏水材料的研究进展,重点讨论了金属基超疏水表面的主要制备方法,比较了不同制备方法的优缺点。同时,探讨了金属基超疏水表面的各种功能特性,并分析了金属基超疏水表面目前在制备和应用中存在的主要问题。指出金属基超疏水表面未来的重点发展方向是简化制备工艺、降低成本、提高超疏水表面的耐久性和稳定性以及制备具有自修复性能的金属超疏水表面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志斌
尉小凤
王海涛
史雪婷
冯利邦
关键词 金属超疏水制备性能    
Abstract:The research progress of superhydrophobic surface on metal substrates was reviewed. The main preparation methods of metal-based superhydrophobic surface were discussed, and the advantages and disadvantages of different preparation method were compared. At the same time, the functional properties of metal-based superhydrophobic surface were discussed, and the main problems in preparation and application of metal-based superhydrophobic surfaces were analyzed. It was pointed out that the future development direction of metal-based superhydrophobic surface is to simplify the preparation process, reduce costs, improve the durability and stability of superhydrophobic surface, and prepare metal superhydrophobic surface with self-healing properties.
Key wordsmetal    superhydrophobic    preparation    property
收稿日期: 2018-11-30      出版日期: 2019-05-17
中图分类号:  TG174.4  
通讯作者: 冯利邦(1971-),男,博士,教授,主要从事功能界面材料和高分子材料的研究工作,联系地址:甘肃省兰州市安宁西路88号兰州交通大学803信箱(730070),E-mail:fenglb@mail.lzjtu.cn     E-mail: fenglb@mail.lzjtu.cn
引用本文:   
张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
ZHANG Zhi-bin, YU Xiao-feng, WANG Hai-tao, SHI Xue-ting, FENG Li-bang. Research progress in preparation and properties of superhydrophobic surface on metal substrates. Journal of Materials Engineering, 2019, 47(5): 26-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001388      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/26
[1] DRUMMOND C, ISRAELACHVILI J. Surface forces and wett-ability[J]. Journal of Petroleum Science and Engineering, 2002, 33(1/3):123-133.
[2] 江雷. 从自然到仿生的超疏水纳米界面材料[J].化工进展,2003, 22(12):1258-1264. JIANG L. Nanostructured materials with superhydrophobic sur-face-from nature to biomimesis[J]. Chemical Industry and Engin-eering Progress, 2003, 22(12):1258-1264.
[3] 高雪峰,江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 35(7):559-564. GAO X F, JIANG L. Recent studies of natural superhydrophobic bio-surfaces[J]. Physics, 2006, 35(7):559-564.
[4] ZHANG X, SHI F, NIU J, et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6):621-633.
[5] LIU K S, XI Y, JIANG L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8):3240-3255.
[6] 连峰,王增勇,张会臣. 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43(1):49-53. LIAN F, WANG Z Y, ZHANG H C. Preparation of hydrophob-ic/superhydrophobic warship aluminium alloy surface and its dur-ability[J]. Journal of Materials Engineering, 2015, 43(1):49-53.
[7] 强小虎,张红霞,王彦平,等. 强黏附性超疏水氧化铝的表面结构和黏附机理[J]. 材料工程, 2013(3):55-60. QIANG X H, ZHANG H X, WANG Y P, et al. Structure and adhesive mechanism of superhydrophobic alumina surface with high adhesive force[J]. Journal of Materials Engineering, 2013(3):55-60.
[8] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8.
[9] 李自力,杨燕. 金属材料交流腐蚀机理、影响因素及风险评价[J]. 化工学报, 2011, 62(7):1790-1799. LI Z L, YANG Y. Mechanism, influence factors and risk evalu-ation of metal alternating current corrosion[J]. CIESC Journal, 2011, 62(7):1790-1799.
[10] CHEN Y H. Corrosion resistance of glass coating on metal surface with thermal deposition method[J]. Journal of the Univ-ersity of Petroleum China, 2003, 27(5):81-83.
[11] JIN H Y, LI Z W, WEI S C, et al. Corrosion resistance and dynamic anti-icing of superhydrophobic surface on ASW[J]. Surface Engineering, 2018, 34(8):603-610.
[12] ZANG D M, ZHU R W, ZHANG W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8):1-7.
[13] GAO X Y, GUO Z G. Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface[J]. Journal of Colloid and Interface Science, 2018, 512:239-248.
[14] JIANG D, ZHOU H, WAN S, et al. Fabrication of superhy-drophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J]. Surface and Coatings Technology, 2018, 339:155-166.
[15] ISHIZAKI T,MASUDA Y,SAKAMOTO M. Corrosion resist-ance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solu-tion[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(8):4780-4788.
[16] WANG N, XIONG D S, DENG Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6260-6272.
[17] FENG L B, CHE Y H, LIU Y H, et al. One-step immersion method for fabricating superhydrophobic aluminum alloy with excellent corrosion resistance[J]. Surface and Interface Anal-ysis, 2016, 48(12):1320-1327.
[18] WAN S, CONG Y, JIANG D, et al. Weathering barrier enh-ancement of printed circuit board by fluorinated silica based superhydrophobic coating[J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects, 2018, 538:628-638.
[19] WANG Y, LIU X W, ZHANG H F, et al. Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J]. RSC Advances, 2015, 5(24):18909-18914.
[20] 杨钦,罗荘竹,谭生,等. 超疏水自清洁涂层防结冰技术的研究进展[J]. 中国表面工程, 2016, 29(4):10-22. YANG Q, LUO Z Z, TAN S, et al. Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J]. China Surface Engineering, 2016, 29(4):10-22.
[21] 刘新,赵清含. 超疏水自清洁涂料制备及应用研究[J]. 无线互联科技, 2018(6):108-112. LIU X, ZHAO Q H. Study on the preparation and application of superhydrophobic self-cleaning coating[J]. Wireless Internet Technology, 2018(6):108-112.
[22] 张艳平,董兵海,王世敏,等. 耐久性超疏水表面的构建及其研究进展[J]. 功能材料, 2017, 48(6):6057-6063. ZHANG Y P, DONG B H, WANG S M, et al. Construction of durable superhydrophobic surface and its research progress[J]. Journal of Functional Materials, 2017, 48(6):6057-6063.
[23] 徐文骥,宋金龙,孙晶,等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011(5):93-98. XU W J, SONG J L, SUN J, et al. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011(5):93-98.
[24] JEEVAHAN J, CHANDRASEKARAN M, JOSEPH G B, et al. Superhydrophobic surfaces:a review on fundamentals, appl-ications and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2):231-250.
[25] WEN G, GUO Z G, LIU W M. Biomimetic polymeric superh-ydrophobic surfaces and nanostructures:from fabrication to app-lications[J]. Nanoscale, 2017, 9(10):3338-3366.
[26] FENG L B, ZHANG H X, WANG Z L, et al. Superhydrop-hobic aluminum alloy surface:fabrication, structure, and corro-sion resistance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 441:319-325.
[27] KIM J H, MIRZAEI A, KIM H W, et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching[J]. Applied Surface Science, 2018, 439:598-604.
[28] FENG L B, YAN Z N, SHI X T, et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 2018, 124(2):142-156.
[29] FENG L B, ZHU Y L, FAN W B, et al. Fabrication and corr-osion resistance of superhydrophobic magnesium alloy[J]. App-lied Physics A, 2015, 120(2):561-570.
[30] FENG L B, CHE Y H, LIU Y H, et al. Fabrication of super-hydrophobic aluminium alloy surface with excellent corrosion re-sistance by a facile and environment-friendly method[J]. Applied Surface Science, 2013, 283:367-374.
[31] LI X W, ZHANG Q X, GUO Z, et al. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance[J]. RSC Advances, 2015, 5(38):29639-29646.
[32] LIU W, XU Q J, HAN J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance[J]. Corrosion Science,2016, 110:105-113.
[33] 李晶,赵世才,杜锋,等. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5):86-91. LI J, ZHAO S C, DU F, et al. Fabrication of groove and grid structure surface with superhydrophobicity and corrosion resis-tance by laser[J]. Journal of Materials Engineering, 2018, 46(5):86-91.
[34] 任杰,廖瑞瑞,杨武,等.辉光放电电解等离子体处理制备铁基表面超疏水材料[J]. 应用化学, 2013, 30(2):208-213. REN J, LIAO R R, YANG W, et al. Fabrication of superh-ydrophobic iron-surface by using glow discharge electrolysis plas-ma[J]. Chinese Journal of Applied Chemistry, 2013, 30(2):208-213.
[35] GUSTAFSSON L, JANSSON R, HEDHAMMAR M, et al. Structuring of functional spider silk wires, coatings, and sheets by self-assembly on superhydrophobic pillar surfaces[J]. Adva-nced Materials, 2017, 30(3):1-8.
[36] PANNEERSELVAM V, MANICKAM ANBU K. Hierarchic-ally ordered self-lubricating superhydrophobic anodized alumi-num surfaces with enhanced corrosion resistance[J]. ACS Appl-ied Materials & Interfaces, 2015, 7(3):1516-1526.
[37] FENG L B, ZHAO L B, QIANG X H, et al. Fabrication of superhydrophobic copper surface with excellent corrosion resis-tance[J]. Applied Physics A, 2015, 119(1):75-83.
[38] 罗晓民,魏梦媛,曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5):92-98. LUO X M, WEI M Y, CAO M. Preparation of superhydro-phobic Cu mesh with corrosion resistance and applications in oil-water separation[J]. Journal of Materials Engineering, 2018, 46(5):92-98.
[39] ZHOU X, YU S R, GUAN S W, et al. Fabrication and charact-erization of superhydrophobic TiO2 nanotube coating by a facile anodic oxidation approach[J]. Surface and Coatings Techn-ology, 2018, 354:83-91.
[40] HÖHNE S, BLANK C, MENSCH A, et al. Superhydrophobic alumina surfaces based on polymer-stabilized oxide layers[J]. Macromolecular Chemistry and Physics, 2009, 210(16):1263-1271.
[41] LIU C S, SU F H, LIANG J Z. Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Advances, 2014, 4(98):556-564.
[42] 王晨玥,杨文秀,张洪敏,等. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43(11):13-18. WANG C Y, YANG W X, ZHANG H M,et al. Preparation of durable superhydrophobic surface on pure titanium substrate via low-cost route[J]. Journal of Materials Engineering, 2015, 43(11):13-18.
[43] 郑顺丽,李澄,项腾飞,等. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10):71-78. ZHENG S L, LI C, XIANG T F, et al. Fabrication of alumin-um-based superhydrophobic coating by anodization and research on stability and corrosion resistance[J]. Journal of Materials Engineering, 2017, 45(10):71-78.
[44] LIU Y, LIU J D, LI S Y, et al. One-step method for fabrication of biomimetic superhydrophobic surface on aluminum alloy[J]. Colloids and Surfaces A:Physicochemical and Engineering Asp-ects, 2015, 466:125-131.
[45] PI P H, HOU K, ZHOU C L, et al. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation[J]. Applied Surface Science, 2017, 396:566-573.
[46] JIANG S Z, GUO Z N, GYIMAH G K, et al. Preparation of biomimetic superhydrophobic surface by a facile one-step pulse electrodeposition[J]. Procedia CIRP, 2018, 68:237-241.
[47] KANG C, LU H F, YUAN S J, et al. Superhydrophilicity/superhydrophobicity of nickel micro-arrays fabricated by electr-oless deposition on an etched porous aluminum template[J]. Chemical Engineering Journal, 2012, 203(5):1-8.
[48] 程江,赵安,孙逸飞,等. 铜基高梯度润湿表面的构建与表征[J]. 功能材料, 2015, 46(8):8138-8143. CHENG J, ZHAO A, SUN Y F, et al. Preparation and charac-terization of high wettability gradient surface on copper substrate[J]. Journal of Functional Materials,2015, 46(8):8138-8143.
[49] ZHANG B B, LI Y T, HOU B R. One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum sub-strate with enhanced self-cleaning and anticorrosion properties[J]. RSC Advances, 2015, 5(121):100000-100010.
[50] SU F H, YAO K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials and Interfaces, 2014, 6(11):8762-8770.
[51] WAN Y X, CHEN M J, LIU W, et al. The research on prepar-ation of superhydrophobic surfaces of pure copper by hydrother-mal method and its corrosion resistance[J]. Electrochimica Acta, 2018, 270:310-318.
[52] CAO L, WAN Y, WANG Y H, et al. Fabrication and mech-anical durability of a superhydrophobic copper surface with mor-phological development from hydrothermal reaction:fabrication of a superhydrophobic copper surface[J]. Surface and Interface Analysis, 2016, 48(13):1418-1422.
[53] LI L J, HUANG T, LEI J L, et al. Robust biomimetic-stru-ctural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1449-1457.
[54] PAN S, WANG N, XIONG D, et al. Fabrication of superhy-drophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J]. Applied Surface Science, 2016, 389:547-553.
[55] WANG C Z, TANG F, LI Q, et al. Spray-coated superhydr-ophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties[J]. Colloids and Surfaces A:Physicoch-emical and Engineering Aspects, 2017, 514:236-242.
[56] LI W, KANG Z X. Fabrication of corrosion resistant superhy-drophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Techn-ology, 2014, 253(9):205-213.
[57] FENG L B, YAN Z N, QIANG X H, et al. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior[J]. Applied Physics A, 2016, 122(3):165-179.
[58] 朱亚利,范伟博,冯利邦,等. 超疏水镁合金表面的防黏附和耐腐蚀性能[J]. 材料工程, 2016, 44(1):66-70. ZHU Y L, FAN W B,FENG L B, et al. Anti-adhesion and corrosion resistance of superhydrophobic magnesium alloy surf-ace[J]. Journal of Materials Engineering, 2016, 44(1):66-70.
[59] 晏忠钠,车彦慧,冯利邦,等. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43(9):25-29. YAN Z N, CHE Y H, FENG L B, et al. Anti-icing and anti-adhesion behavior of superhydrophobic aluminum alloy surface[J]. Journal of Materials Engineering, 2015, 43(9):25-29.
[60] TUO Y J, CHEN W P, ZHANG H F, et al. One-step hydro-thermal method to fabricate drag reduction superhydrophobic surface on aluminum foil[J]. Applied Surface Science, 2018, 446:230-235.
[61] WANG Z P, ZHANG S S, GAO S, et al. A simple, low-cost method to fabricate drag-reducing coatings on a macroscopic mo-del ship[J]. Chemical Research in Chinese Universities,2018,34(4):616-621.
[62] 万闪,姜丹,蔡光义,等. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9):144-151. WAN S, JIANG D, CAI G Y, et al. Preparation and properties of superhydrophobic conversion film on aluminium alloy[J]. Journal of Materials Engineering, 2018, 46(9):144-151.
[63] ZHANG Z Z, GE B, MEN X H, et al. Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 490:182-188.
[64] WANG P, YAO T, SUN B, et al. Fabrication of mechanically robust superhydrophobic steel surface with corrosion resistance property[J]. RSC Advances, 2017, 7(63):699-703.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[6] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[7] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[8] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[12] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[13] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[14] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[15] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn