Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 59-81    DOI: 10.11868/j.issn.1001-4381.2018.001412
  综述 本期目录 | 过刊浏览 | 高级检索 |
多孔材料性能模型研究3:数理推演
刘培生, 杨春艳, 程伟
北京师范大学 核科学与技术学院射线束技术教育部重点实验室, 北京 100875
Study on property model for porous materials 3: mathematical deduction
LIU Pei-sheng, YANG Chun-yan, CHENG Wei
Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
全文: PDF(2582 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于三维网状多孔材料的八面体结构模型,本文介绍了多孔材料基本物理、力学性能数理关系的推演过程。此过程覆盖了多孔材料的单向拉伸、多向拉压、传导性和疲劳性能等方面。重点描述了多孔材料内部构成的等效电路、多孔材料单向拉伸的准刚体结构受力模型和变形体结构受力模型,在此基础上讨论了压缩强度问题,并对双向拉伸和三向拉压的有关数理关系展开推演和分析。根据本八面体模型,多孔材料在弯曲等非直接拉压受力形式下的力学性能数理关系,同样可由单向拉压的推演而获得。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘培生
杨春艳
程伟
关键词 多孔材料泡沫金属泡沫陶瓷性能模型数理推演    
Abstract:Based on the "octahedral structure model" of three-dimensional reticulated porous materials, the mathematical deductions are introduced one by one for the mathematical relations of their basic physical and mechanical properties in this paper. The present review on these deductions covers the unidirectional tension and the multidirectional tension/compression of porous materials, as well as the conductivity and the fatigue property. Emphasis is placed on describing the equivalent circuit of the inner structure of porous materials, and the force action model both of quasi-rigid body and deformed body structure of porous materials under unidirectional tension. On this basis, the compressive strength is discussed, and the biaxial tension and triaxial tension/compression are mathematically deducted and analyzed. According to this octahedron model, the mathematical relations of mechanical properties can be also obtained from the deduction of unidirectional tension and compression, for porous materials under loading of non-direct tension and compression.
Key wordsporous material    metal foam    ceramic foam    property model    mathematical deduction
收稿日期: 2018-12-04      出版日期: 2019-08-22
中图分类号:  TB383  
通讯作者: 程伟(1973-),男,副研究员,博士,现从事材料计算等方面的研究工作,联系地址:北京师范大学核科学与技术学院(100875),E-mail:liu996@263.net,chengwei@bnu.edu.cn     E-mail: liu996@263.net,chengwei@bnu.edu.cn
引用本文:   
刘培生, 杨春艳, 程伟. 多孔材料性能模型研究3:数理推演[J]. 材料工程, 2019, 47(8): 59-81.
LIU Pei-sheng, YANG Chun-yan, CHENG Wei. Study on property model for porous materials 3: mathematical deduction. Journal of Materials Engineering, 2019, 47(8): 59-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001412      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/59
[1] LIU P S,LIANG K M.Functional materials of porous metals made by P/M,electroplating and some other techniques[J].Journal of Materials Science,2001,36(21):5059-5072.
[2] BANHART J.Manufacture,characterisation and application of cellular metals and metal foams[J].Progress in Materials Science,2001,46(6):559-632.
[3] TURNBULL M M,LANDEE C P.Porous materials with a difference[J].Science,2002,298(5599):1723-1724.
[4] 陈祥,李言祥.金属泡沫材料研究进展[J].材料导报,2003,17(5):5-8. CHEN X,LI Y X.Porous metals:research advances and applications[J].Materials Review,2003,17(5):5-8.
[5] LEFEBVRE L P,BANHART J,DUNAND D C.Porous metals and metallic foams:current status and recent developments[J].Advanced Engineering Materials,2008,10(9):775-787.
[6] 刘培生,陈祥,李言祥.泡沫金属[M].长沙:中南大学出版社,2012. LIU P S,CHEN X,LI Y X.Metal foams[M].Changsha:Central South University Press,2012.
[7] 刘培生.多孔材料引论[M].2版.北京:清华大学出版社,2013. LIU P S.Introduction to porous materials[M].2nd ed.Beijing:Tsinghua University Press,2013.
[8] LIU P S,CHEN G F.Porous materials:processing and applica-tions[M].Boston,USA:Elsevier Science,2014.
[9] ATWATER M A,GUEVARA L N,DARLING K A,et al.Solid state porous metal production:a review of the capabilities,characteristics,and challenges[J].Advanced Engineering Materials,2018,20(7):1700766.
[10] 刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006. LIU P S,MA X M.Methods to measure porous materials[M].Beijing:Metallurgical Industry Press,2006.
[11] LIU P S.Different theories application to foamed metals under biaxial equal-stress tension[J].Materials Science and Engineering:A,2004,364:370-373.
[12] VESENJAK M,VEYHL C,FIEDLER T.Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J].Materials Science and Engineering:A,2012,541:105-109.
[13] HUANG L,WANG H,YANG D H,et al.Effects of calcium on mechanical properties of cellular Al-Cu foams[J].Materials Science and Engineering:A,2014,618:471-478.
[14] PARVANIAN A M,SAADATFAR M,PANJEPOUR M,et al.The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder technique[J].Materials & Design,2014,53:681-690.
[15] XIAO L J,SONG W D,TANG H P,et al.High temperature compression properties of open-cell Ni-20Cr foams produced by impregnation[J].Materials & Design,2015,85:47-53.
[16] LIU P S,QING H B,HOU H L.Primary investigation on sound absorption performance of highly porous titanium foams[J].Materials & Design,2015,85:275-281.
[17] PALKA K,ADAMEK G,JAKUBOWICZ J.Compression beha-vior of Ti foams with spherical and polyhedral pores[J].Advanced Engineering Materials,2016,18(8):1511-1518.
[18] LIU P S,QING H B,HOU H L,et al.EMI shielding and thermal conductivity of a high porosity reticular titanium foam[J].Materials & Design,2016,92:823-828.
[19] SUN J X,DUAN C Y,LIU P S.Sound absorption charac-terization of aluminum foam made by press infiltration casting[J].Multidiscipline Modeling in Materials and Structures,2016,12(4):737-747.
[20] SIMONEAU C,TERRIAULT P,JETTE B,et al.Development of a porous metallic femoral stem:design,manufacturing,simulation and mechanical testing[J].Materials & Design,2017,114:546-556.
[21] ZHAI W,YU X,SONG X,et al.Microstructure-based experi-mental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique[J]. Materials & Design,2018,137:108-116.
[22] 刘培生,崔光,程伟.多孔材料性能模型研究1:数理关系[J].材料工程,2019,47(6):42-46. LIU P S,CUI G,CHEN W.Study on the property model for porous materials 1:mathematical relations[J].Journal of Materials Engineering,2019,47(6):42-46.
[23] 刘培生,夏凤金,罗军.多孔材料模型分析[J].材料工程,2009(7):83-87. LIU P S,XIA F J,LUO J.Analyses of the classical model for porous materials[J].Journal of Materials Engineering,2009(7):83-87.
[24] 刘培生,夏凤金,程伟.多孔材料性能模型研究2:实验验证[J].材料工程,2019,47(7):35-49. LIU P S,XIA F J,CHEN W.Study on the property model for porous materials 2:experimental verification[J].Journal of Materials Engineering,2019,47(7):35-49.
[25] LIU P S,LI T F,FU C.Relationship between electrical resis-tivity and porosity for porous materials[J].Materials Science and Engineering:A,1999,268:208-215.
[26] LIU P S.Chapter 3:porous materials.materials science research horizon[M].New York,USA:NOVA Science Publishers,2007.
[27] LIU P S.The tensile strength of porous metals with high poro-sity[J].Journal of Advanced Materials,2000,32(2):9-16.
[28] LIU P S.Tensile fracture behavior of foamed metallic materials properties[J].Materials Science and Engineering:A,2004,384(1/2):352-354.
[29] YANG Q C,ZHANG M J,LIU P S.Macroscopic fracture behavior of nickel foam under tension[J].Multidiscipline Modeling in Materials and Structures,2016,12(1):110-118.
[30] GIBSON L J,ASHBY M F.Cellular solids:structure and prop-erty[M].Cambridge,UK:Cambridge University Press,1999.
[31] LIU P S,FU C,LI T F.Relationship between elongation and porosity for high porosity metals[J].Transactions of Nonferrous Metals Society of China,1999,9(3):546-552.
[32] 王新桥,陈静仪,赵志敏,等.拉伸试验因素对拉伸细丝的力学性能影响[J].功能材料,1991,22(3):160-167. WANG X Q,CHEN J Y,ZHAO Z M,et al.Effect of tensile testing factors on mechanical properties of fine wire[J].Journal of Functional Materials,1991,22(3):160-167.
[33] LIU P S,CHEN G F,DUAN C Y.Investigation on Young's modulus and Poisson ratio of foamed metals[J].Materials Science and Technology,2011,27(10):1498-1501.
[34] LIU P S.A new analytical model about the relationship between nominal failure stresses and porosity for foamed metals under biaxial tension[J].Materials & Design,2007,28(10):2678-2683.
[35] LIU P S,CHEN G F.Mechanical relation of foamed metals under uniaxial and biaxial loads of collective tension and compression[J].Materials Science and Engineering:A,2009,507(1/2):190-193.
[36] LIU P S,CHEN G F,CHEN Y M.Mechanical model of porous metal foams under multiaxial tensile loads[J].Philosophical Magazine Letters,2009,89(10):655-663.
[37] 刘培生.多孔材料在三向载荷作用下的力学模型[J].材料科学与工艺,2010,18(5):609-613. LIU P S.Mechanical model of porous materials under multiaxial loadings[J].Materials Science & Technology,2010,18(5):609-613.
[38] 刘培生.泡沫材料在剪切载荷作用下的力学关系推演和分析[J].稀有金属材料与工程,2010,39(3):457-459. LIU P S.Deduction and analysis on mechanical relationship of porous open-cell metal foams under shearing loads[J].Rare Metal Materials and Engineering,2010,39(3):457-459.
[39] LIU P S.Mechanical relations for porous metal foams under several typical loads of shearing,torsion and bending[J].Materials Science and Engineering:A,2010,527(29/30):7961-7966.
[40] 刘培生,罗军,陈一鸣.泡沫金属多孔体在扭矩作用下的分析表征[J].清华大学学报(自然科学版),2010,50(6):932-935. LIU P S,LUO J,CHEN Y M.Characterization of porous open-cell metal foams under torsion[J].Journal of Tsinghua University (Science and Technology),2010,50(6):932-935.
[41] 范钦珊,蔡新.工程力学[M].北京:机械工业出版社,2012. FAN Q S,CAI X.Engineering mechanics[M].Beijing:China Machine Press,2012.
[42] 刘培生,陈一鸣,丁晓纪.泡沫金属在弯矩作用下的表征分析[J].材料工程,2009(5):65-67. LIU P S,CHEN Y M,DING X J.Analysis of porous open-cell metal foams under bending moment[J].Journal of Materials Engineering,2009(5):65-67.
[43] 刘培生,马晓明.高孔率泡沫金属材料疲劳表征模型及其实验研究[J].材料工程,2012(5):47-54. LIU P S,MA X M.Fatigue model for foamed metals with high porosity and corresponding experimental study[J].Journal of Materials Engineering,2012(5):47-54.
[44] 陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002. CHEN C Y.Fatigue and fracture[M].Wuhan:Huazhong University of Science & Technology Press,2002.
[45] 徐灏.疲劳强度[M].北京:高等教育出版社,1988:9-14,46-52,90,111-146. XU H.Fatigue strength[M].Beijing:Advanced Education Press,1988:9-14,46-52,90,111-146.
[46] 刘培生.多孔金属比表面积的计算方法[J].材料研究学报,2009,23(4):415-420. LIU P S.Calculation method for the specific surface area of porous metals[J].Chinese Journal of Materials Research,2009,23(4):415-420.
[1] 庄金亮, 刘湘粤, 杜嬛. TEMPO功能化锆基MOFs的合成及醇催化氧化性能[J]. 材料工程, 2020, 48(10): 169-175.
[2] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[3] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[4] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[5] 杨淑敏, 李海涛, 顾建军, 韩伟, 杨巍, 岂云开. 彩色多孔氧化铝薄膜的制备和光学特性[J]. 材料工程, 2015, 43(4): 30-36.
[6] 郝刚领, 韩福生, 王伟国. 镁基多孔材料准静态压缩行为与吸能特性研究[J]. 材料工程, 2013, (2): 29-34.
[7] 袁颂东, 熊坤, 胡昆鹏, 张运华, 罗意, 江国栋. 以氯化铵为添加剂制备高比表面六方氮化硼多孔材料及性能研究[J]. 材料工程, 2013, 0(10): 53-56.
[8] 刘培生, 马晓明. 高孔率泡沫金属材料疲劳表征模型及其实验研究[J]. 材料工程, 2012, 0(5): 47-53.
[9] 刘培生, 夏凤金, 罗军. 多孔材料模型分析[J]. 材料工程, 2009, 0(7): 83-87.
[10] 刘培生, 陈一鸣, 丁晓纪. 泡沫金属在弯矩作用下的表征分析[J]. 材料工程, 2009, 0(5): 65-67.
[11] 赵鹏, 浦玉萍, 黄春晖, 吕广庶. 超声波对聚氨酯泡沫塑料化学镀铜的影响[J]. 材料工程, 2008, 0(4): 43-46.
[12] 马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现状[J]. 材料工程, 2007, 0(3): 62-66.
[13] 刘爱红, 李爱民, 孙康宁. 多孔HAp-(β-Ca3(PO4)2)-Si3N4生物复合材料的力学性能与微观结构[J]. 材料工程, 2007, 0(10): 14-17.
[14] 浦玉萍, 吕广庶, 李晓军, 王强. 添加剂对聚酰亚胺基复合材料微孔特性的影响[J]. 材料工程, 2003, 0(6): 7-10.
[15] 姚海标, 谢长生. MJS快速成型制备金属多孔材料[J]. 材料工程, 1998, 0(2): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn