Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.001430
  增材制造与再制造专栏 本期目录 | 过刊浏览 | 高级检索 |
高性能金属材料激光增材制造应力变形调控研究现状
陈勇1, 陈辉1, 姜亦帅1, 汪倩1, 吴影1, 熊俊1, 董世运2
1. 西南交通大学 材料科学与工程学院 材料先进技术教育部重点实验室, 成都 610031;
2. 陆军装甲兵学院 装备再制造技术国防科技重点实验室, 北京 100072
Research progress in stress and deformation control in laser additive manufacturing for high-performance metals
CHEN Yong1, CHEN Hui1, JIANG Yi-shuai1, WANG Qian1, WU Ying1, XIONG Jun1, DONG Shi-yun2
1. Key Laboratory of Advanced Technologies of Materials(Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(2235 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 随着激光增材制造基础理论研究和设备水平的提升,激光增材制造技术越来越多地应用于大型复杂结构的生产制造。激光增材成形过程中形成的应力会导致成形件变形、开裂,因此应力变形的控制是激光增材制造过程亟待解决的关键问题。本文总结了激光增材制造残余应力形成机制、应力变形测试技术和应力变形调控措施等方面的研究现状,提出了激光增材制造应力变形调控存在的主要问题及以后的研究方向,为高性能金属构件激光增材制造"控形"研究提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈勇
陈辉
姜亦帅
汪倩
吴影
熊俊
董世运
关键词 高性能金属材料激光增材制造应力变形检测应力变形调控    
Abstract:With the development of basic theoretical research and equipment, laser additive manufacturing technology is widely used in the manufacture of large complex components. However, the internal stress in laser additive manufacturing process tends to result in distortion and cracking. Stress and deformation control has become an urgent issue in laser additive manufacturing process. In this paper, research progress of residual stress in laser additive manufacturing was reviewed from various aspects such as residual stress forming mechanism, test methods, control measures. Furthermore, the main problems and research directions were proposed for the research of stress and deformation control technology, which provides guidance for the research of "shape control" in laser additive manufacturing.
Key wordshigh-performance metal material    laser additive manufacturing    stress and deformation me-asurement    stress and deformation control
收稿日期: 2018-12-11      出版日期: 2019-11-21
中图分类号:  TG249.9  
基金资助: 
通讯作者: 陈辉(1970-)男,教授,博士,主要从事激光增材制造、激光焊接及激光表面工程技术研究,联系地址:成都市二环路北一段111号西南交通大学材料科学与工程学院(610031),E-mail:xnrpt@swjtu.edu.cn     E-mail: xnrpt@swjtu.edu.cn
引用本文:   
陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
CHEN Yong, CHEN Hui, JIANG Yi-shuai, WANG Qian, WU Ying, XIONG Jun, DONG Shi-yun. Research progress in stress and deformation control in laser additive manufacturing for high-performance metals. Journal of Materials Engineering, 2019, 47(11): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001430      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/1
[1] MERCELIS P, KRUTH J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5):254-265.
[2] KRÓL M, TANSKI T. Surface quality research for selective laser melting of Ti-6Al-4V alloy[J]. Archives of Metallurgy & Materials, 2016, 61(3):1291-1296.
[3] 刘艳,李宗义,张晓刚,等. 316L不锈钢粉选择性激光熔化成形工艺及成形后的性能[J]. 机械工程材料, 2018, 42(5):40-44. LIU Y, LI Z Y, ZHANG X G, et al. Selective laser melting forming process of 316L stainless steel powder and properties of formed parts[J]. Materials for Mechanical Engineering, 2018, 42(5):40-44.
[4] OUYANG D, LI N, LIU L. Structural heterogeneity in 3D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys & Compounds, 2018, 740:603-609.
[5] 赫庆坤,宋立新. 不同厚度基体激光熔覆应力分析[J]. 激光杂志, 2018(1):60-63. HE Q K, SONG L X. Stress analysis of laser cladding for different thickness of matrix[J]. Laser Journal, 2018(1):60-63.
[6] KEMPEN K, VRANCKEN B, BULS S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science & Engineering, 2014, 136(6):1-6.
[7] BRANNER M G. Investigations on residual stresses and defor-mations in selective laser melting[J]. Production Engineering, 2009, 1(4):35-45.
[8] WANG L, JIANG X, ZHU Y, et al. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts[J]. International Journal of Advanced Manufact-uring Technology, 2018, 97(9/12):1-12.
[9] HEIGEL J C,MICHALERIS P,REUTZEL E W, et al. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2015(5):9-19.
[10] FANG J X, DONG S Y, WANG Y J, et al. The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition[J]. Materials & Design, 2015, 87:807-814.
[11] DENLINGER E R, PAN M. Effect of stress relaxation on distortion in additive manufacturing process modeling[J]. Additive Manufacturing, 2016, 12:51-59.
[12] 廖英岚. 激光选区熔化成形GH4169高温合金的残余应力研究[D]. 武汉:华中科技大学,2017. LIAO Y L. Research on residual stress of GH4169 super-alloy fabricated by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2017.
[13] ZENG K, PAL D, TENG C, et al. Evaluations of effective thermal conductivity of support structures in selective laser melting[J]. Additive Manufacturing, 2015, 6:67-73.
[14] 倪辰旖,张长东,刘婷婷,等.基于固有应变法的激光选区熔化成形变形趋势预测[J].中国激光,2018,45(7):78-85. NI C Y, ZHANG C D, LIU T T, et al. Deformation prediction of metal selective laser melting based on inherent strain finite element method[J]. Chinese Journal of Lasers, 2018, 45(7):78-85.
[15] AFAZOV S, DENMARK W, TORALLES B L, et al. Disto-rtion prediction and compensation in selective laser melting[J]. Additive Manufacturing, 2017, 17:15-22.
[16] LI C, LIU J, FANG X Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J].Additive Manufacturing, 2017,17:157-168.
[17] SALMI A, ATZENI E, IULIANO L, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting(SLM)[J]. Procedia CIRP, 2017, 62:458-463.
[18] LIU Y, YANG Y Q, WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:647-656.
[19] 董世运,闫晓玲,徐滨士.微观组织及残余应力对瑞利波评价激光熔覆层应力的影响[J].机械工程学报, 2015, 51(24):50-56. DONG S Y, YAN X L, XU B S. Influence of microstructure and residual stress on surface stress measurement of laser cladding layer by rayleigh wave[J]. Journal of Mechanical Engineering, 2015, 51(24):50-56.
[20] AN K, YUAN L, DIAL L, et al. Neutron residual stress meas-urement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing[J]. Materials & Design, 2017, 135:122-132.
[21] WANG Z Q, STOICA A D, MA D, et al. Stress relaxation in a nickel-base superalloy at elevated temperatures with in situ neutron diffraction characterization:application to additive manufacturing[J]. Materials Science and Engineering:A, 2018, 714:75-83.
[22] ZHU L N, XU B S, WANG H D, et al. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding[J]. Journal of Materials Science, 2012, 47(5):2122-2126.
[23] ZHAN Y, LIU C S, KONG X W, et al. Experiment and nume-rical simulation for laser ultrasonic measurement of residual stress[J]. Ultrasonics, 2017, 73:271-276.
[24] SABINE L R, MEHDI S, ANIS H. Improvement of the bridge curvature method to assess residual stresses in selective laser melting[J]. Additive Manufacturing, 2018, 22:320-329.
[25] PETER H, JAN F, JOHN P, et al. Holographic measurement of distortion during laser melting:additive distortion from overlapping pulses[J]. Optics & Laser Technology, 2018, 100:1-6.
[26] LUNDBÄCK A, LINDGREN L Z. Modelling of metal deposition[J]. Finite Elements in Analysis and Design, 2011, 47(10):1169-1177.
[27] BIEGLER M, GRAF B, RETHMEIER M. In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.
[28] PRATIK V, KAMRAN M, IAIN T, et al. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting[J]. Additive Manufacturing, 2015, 7:12-19.
[29] 方金祥. 激光熔覆成形马氏体不锈钢应力演化及调控机制[D].哈尔滨:哈尔滨工业大学,2016. FANG J X. Evolution and control of stress during laser cladding forming of martensitic stainless steel[D]. Harbin:Harbin Institute of Technology, 2016.
[30] 顾冬冬,陈洪宇,戴冬华,等.一种基于相变尺寸效应自动调控激光加工成形精度的方法:CN107952961A[P]. 2018-04-24. GU D D, CHEN H Y, DAI D H, et al. Automatic laser machining forming accuracy regulating method based on phase transition size effect:CN107952961A[P]. 2018-04-24.
[31] WANG H. Effect of process parameters on residual stress distribution during direct laser metal deposition shaping[J]. Advanced Materials Research, 2014, 989/994:49-54.
[32] MUGWAGWA L, DIMITROV D, MATOPE S, et al. Influ-ence of process parameters on residual stress related distortions in selective laser melting[J] Procedia Manufacturing, 2018,21:92-99.
[33] 杨光,丁林林,王向明,等. 扫描路径对激光修复钛合金残余应力与变形的影响[J]. 红外与激光工程, 2015, 40(10):2926-2932. YANG G, DING L L, WANG X M, et al. Influence of scanning path on residual stress and distortion of laser repairing titanium alloy[J]. Infrared and Laser Engineering, 2015, 40(10):2926-2932.
[34] CHENG B, SHRESTHA S, CHOU K C. Stress and defor-mation evalu-ations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12:240-251.
[35] HAIDER A, HASSAN G,KAMRAN M. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering:A, 2018, 712:175-187.
[36] LIU Q, YOANN D, SONG B, et al. Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic[J]. Journal of Materials Processing Technology, 2015, 222:61-74.
[37] LIU Z, SONG K, GAO B, et al. Microstructure and mechanical properties of Al2O3/ZrO2 directionally solidified eutectic ceramic prepared by laser 3D printing[J]. Journal of Materials Science & Technology, 2016, 32:320-325.
[38] 卞宏友,翟泉星,曲伸,等. 基体预热下激光沉积修复GH4169合金温度场和应力场演变[J]. 应用激光, 2017,3:327-332. BIAN H Y, ZHUAI Q X, QU S, et al. The evolution of temperature field and stress field in laser deposition repair GH4169 with substrate preheating[J]. Applied Laser, 2017, 3:327-332.
[39] DAMIEN B, WILHELM M, NORBERT P, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1):012004.
[40] HAGEDORN Y, WILKES J, MEINERS W, et al. Net shaped high performance oxide ceramic parts by selective laser melting[J]. Physics Procedia, 2010, 5:587-594.
[41] 冯联华,张宁,曹洪忠,等. 双波长选区激光熔化成形中F-theta镜头光学设计[J]. 长春理工大学学报(自然科学版), 2016, 39(4):327-332. FENG L H, ZHANG N, CAO H Z, et al. Optical design of F-theta lens for dual wavelength selective laser melting[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(4):327-332.
[42] PAPADAKIS L, CHANTZIS D,SALONITIS K.On the energy efficiency of pre-heating methods in SLM/SLS processes[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1/4):1325-1338.
[43] FURUMOTO T, UEDA T, AZIZ M A, et al. Study on reduction of residual stress induced during rapid tooling process:influence of heating conditions on residual stress[J]. Key Engineering Materials, 2010, 447/448:785-789.
[44] MERCELIS P, KRUTH J.P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5):254-265.
[45] SHIOMI M, OSAKADA K, NAKAMURA K, et al. Residual stress within metallic model made by selective laser melting process[J].CIRP annals-manufacturing technology, 2004, 53(1):195-198.
[46] 付兴领,林鑫,于君,等. 基板预变形对不锈钢激光立体成形件应力应变的影响[J].热加工工艺, 2010,11(39):178-181. FU X L, LIN X, YU J, et al. Effect of substrate pre-deformation on stress and strain fields of stainless steel test-piece by laser solid forming[J]. Casting Forging Welding, 2010, 11(39):178-181.
[47] MISHUROVA T, CABEZA S, ARTZT K, et al. An asse-ssment of subsurface residual stress analysis in SLM Ti-6Al-4V[J]. Materials, 2017, 10, 348:1-14.
[48] CALIGNANO F. Design optimization of supports for overh-anging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 2014, 64:203-213.
[49] 钦兰云,王维,杨光. 超声辅助钛合金激光沉积成形试验研究[J]. 中国激光, 2013, 40(1):76-81. QIN L Y, WANG W, YANG G. Experimental study on ultrasonic-assisted laser metal deposition of titanium alloy[J]. Chinese Journal of Laser, 2013, 40(1):76-81.
[50] 王潭,张安峰,梁少端,等. 超声振动辅助激光金属成形IN718沉积态组织及性能的研究[J]. 中国激光, 2016,43(11):104-109. WANG T, ZHANG A F, LIANG S D, et al. Research on as-deposited microstructure and properties of IN718 parts by ultrasonic vibration laser metal forming[J]. Chinese Journal of Laser, 2016, 43(11):104-109.
[51] ZHANG M, LIU C, SHI X, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting[J]. Applied Sciences, 2016, 6(11):1-7.
[52] 孙杰,赵剑峰,谢娜,等. 电磁辅助激光熔化沉积的残余应力[J]. 南京航空航天大学学报, 2017, 49(6):805-811. SUN J, ZHAO J F, XIE N, et al. Residual stress of laser metal cladding assisted by electromagnetic field[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6):805-811.
[53] HITOMI Y, OMAR F, WU P Y. Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1):305-308.
[54] KALENTICS N, BOILLAT E, PEYRE P, et al. 3D laser shock peening-a new method for the 3D control of residual stresses in selective laser melting[J]. Materials & Design, 2017, 130:350-356.
[55] GUO W, SUN R J, SONG B W, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface & Coatings Technology, 2018, 349:503-510.
[56] 卞宏友,翟泉星,韩双隆,等. 激光沉积修复金属去应力退火局部热处理工艺[J]. 材料热处理学报, 2017, 38(7):129-131. BIAN H Y, ZHUAI Q X, HAN S L, et al. Stress reliving annealing local heat treatment process of metal laser deposition repair[J]. Transactions of Materials and Heat Treatment, 2017, 38(7):129-131.
[57] 卞宏友,赵翔鹏,杨光,等. 热处理对激光沉积修复GH4169合金残余应力和拉伸性能的影响[J].中国激光,2015,42(10):59-64. BIAN H Y, ZHAO X P, YANG G, et al. Effect of heat treatment on residual stress and tensile properties of laser deposition repair GH4169 superalloy[J]. Chinese Journal of Laser, 2015, 42(10):59-64.
[58] SONG B, DONG S, LIU Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting:microstructure, residual stress and tensile behavior[J]. Materials & Design, 2014, 54(2):727-733.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn