Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 97-104    DOI: 10.11868/j.issn.1001-4381.2018.001438
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能
李诗杰1, 韩奎华2
1. 山东建筑大学 热能工程学院, 济南 250101;
2. 山东大学 能源与动力工程学院, 济南 250012
Preparation and electrochemical properties of algae-based super activated carbon based on “egg-box” structure
LI Shi-jie1, HAN Kui-hua2
1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China;
2. School of Energy and Power Engineering, Shandong University, Jinan 250012, China
全文: PDF(3063 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 与陆生植物不同,海藻中含有海藻酸和海藻酸盐,其中海藻酸盐主要以海藻酸钙、海藻酸镁等形式存在于细胞壁中。以马尾藻、浒苔、龙须菜、裙带菜、海带和石莼6种海藻为原料,对海藻炭化后得到的碳产物进行盐酸酸洗,除去海藻酸盐中的钙、镁等离子,形成"蛋盒"式初始孔结构,然后采用KOH活化法制备海藻基超级活性炭,研究酸洗预处理对海藻基活性炭孔结构特性以及电化学性能的影响。结果表明:对海藻炭化产物酸洗预处理,不仅明显增大了海藻基活性炭的比表面积,还大幅度提高了活性炭中介孔的含量。海藻基活性炭的电化学性能得到明显改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李诗杰
韩奎华
关键词 海藻活性炭超级电容器电化学性能盐酸改性    
Abstract:Different with terrestrial plants, algae contains alginic acid and alginate, and the alginate mainly exists in cell walls in the form of calcium alginate and magnesium alginate. Six kinds of algae, sargassum, enteromorpha, asparagus, undaria, kelp and ulva, were used as raw materials, carbon products from algae carbonization were pickled with hydrochloric acid to remove Ca2+ and Mg2+ ions,etc. from alginate and form "egg-box" initial pore structure. Then the algae-based super activated carbon was prepared by KOH activation method, the effect of pickling pretreatment on the pore structure and electrochemical properties of algae-based activated carbon was studied. The results show that the hydrochloric acid pretreatment can not only increase the specific surface area, but also improve the number of mesoporous of the algae-based activated carbons. The electrochemical performance of algae-based activated carbons is improved after hydrochloric acid pretreatment.
Key wordsalgae    activated carbon    supercapacitor    electrochemical performance    acid pretreatment
收稿日期: 2018-12-12      出版日期: 2019-10-12
中图分类号:  TQ150  
通讯作者: 李诗杰(1990-),男,讲师,博士,研究方向为储能材料,联系地址:山东省济南市临港开发区凤鸣路1000号山东建筑大学热能工程学院(25010),E-mail:675767978@163.com     E-mail: 675767978@163.com
引用本文:   
李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
LI Shi-jie, HAN Kui-hua. Preparation and electrochemical properties of algae-based super activated carbon based on “egg-box” structure. Journal of Materials Engineering, 2019, 47(10): 97-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001438      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/97
[1] KARELID V,LARSSON G,BJORLENIUS B. Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon[J]. Journal of Environmental Management,2017,193:163-171.
[2] PATEL M A,LUO F X,SAVARAM K,et al. P and S dual-doped graphitic porous carbon for aerobic oxidation reactions:enhanced catalytic activity and catalytic sites[J]. Carbon,2017,114:383-392.
[3] MAMAGHANI A H,HAGHIGHAT F,LEE C S,et al. Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J]. Applied Catalysis B,2017,203:247-269.
[4] GOMIS-BERENGUER A,VELASCO L F,VELO-GALA I,et al. Photochemistry of nanoporous carbons:perspectives in energy conversion and environmental remediation[J]. Journal of Colloid & Interface Science,2017,490:879-901.
[5] GUNDOGDU A,DURAN C,SENTURK H B,et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste:equilibrium, kinetic, and thermodynamic study[J]. Journal of Chemical & Engineering Data,2012,57(10):2733-2743.
[6] MARTIN-GULLON I,MARCO-LOZAR J P,CAZORLA-AMOROS D,et al. Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons[J]. Carbon,1993,31(8):1351-1354.
[7] BILOE S,GOETZ V,GUILLOT A. Optimal design of an activated carbon for an adsorbed natural gas storage system[J]. Carbon,2002,40(8):1295-1308.
[8] HABILA M A,ALOTHMAN Z A,AL-TAMRAH S A,et al. Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes[J]. Journal of Industrial & Engineering Chemistry,2015,32:336-344.
[9] SOYLAK M. Determination of trace amounts of copper in high-purity aluminum samples after preconcentration on an activated carbon column[J]. Fresenius Environmental Bulletin,1998,7(7):383-387.
[10] ODA H,NAKAGAWA Y. Removal of ionic substances from dilute solution using activated carbon electrodes[J]. Carbon,2003,41(5):1037-1047.
[11] YI J,YAN Q,WU C T,et al. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercap-acitors[J]. Journal of Power Sources,2017,351:130-137.
[12] 耿煜,宋燕,钟明,等.酚醛基活性炭布的制备及电化学性能研究[J].材料工程,2011(10):1-4. GENG Y,SONG Y, ZHONG M,et al. Investigation of preparation and electrochemical performance of phenolic resin based activated caebon cloth[J]. Journal of Materials Engineering,2011(10):1-4.
[13] 陈英方,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料,2008,27(4):6-9. CHEN Y F,LI Y Y,DENG M G. Principles and applications of supercapacitors[J]. Electronic Components and Materials,2008,27(4):6-9.
[14] PATIL B H,JAGADALE A D,LOKHANDE C D.Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application[J]. Synthetic Metals,2012,162(15/16):1400-1405.
[15] MILLER J R,SIMON P. Electrochemical capacitors for energy management[J]. Science,2008,321(5889):651-652.
[16] LEWANDOWSKI A,GALINSKI M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources,2007,173(2):822-828.
[17] BOHLEN O,KOWAL J,SAUER D U. Ageing behaviour of electrochemical double layer capacitors:Part I. Experimental study and ageing model[J]. Journal of Power Sources,2007,172(1):468-475.
[18] XIAO Y,LONG C,ZHENG M T,et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chinese Chemical Letters,2014,25(6):865-868.
[19] KLESZYK P,RATAJCZAK P,SKOWRON P,et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon,2015,81:148-157.
[20] ABIOYE A M,ANI F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors:a review[J]. Renewable & Sustainable Energy Reviews,2015,52:1282-1293.
[21] FARMA R,DERAMAN M,AWITDRUS A,et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresource Technology,2013,132(3):254-261.
[22] WANG G,LING Y,QIAN F,et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. Journal of Power Sources,2011,196(11):5209-5214.
[23] KANG D M,LIU Q L,GU J J,et al. "Egg-box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9(11):11225-11233.
[24] JUREWICZ K,BABEL K. Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy & Fuels,2010,24(6):3429-3435.
[25] BALATHANIGAIMANI M S,SHIM W G,LEE M J,et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electro-chemistry Communications,2008,10(6):868-871.
[26] LI X L,HAN C L,CHEN X Y,et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous & Mesoporous Materials,2010,131(1):303-309.
[27] ZHAO S,WANG C Y,CHEN M M,et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. Journal of Physics & Chemistry of Solids,2009,70(9):1256-1260.
[28] CHEN H B,WANG H B,YANG L F,et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. International Journal of Electrochemical Science,2012,7(6):4889-4897.
[29] LI X,XING W,ZHUO S P,et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Techn-ology,2011,102(2):1118-1123.
[30] 李诗杰,张继刚,李金晓,等.超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程,2018,46(7):157-164. LI S J,ZHANG J G,LI J X,et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Jourmal of Materials Engineering,2018,46(7):157-164.
[31] 雷文,赵晓梅,何平,等. 碳基超级电容器电极材料的研究进展[J]. 化学通报,2013,76(11):981-987. LEI W,ZHAO X M,HE P,et al. Research progress of carbon-based supercapacitor electrode materials[J]. Chemistry Bulletin,2013,76(11):981-987.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[3] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[4] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[5] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[6] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[7] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[11] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[12] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[13] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[14] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[15] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn