Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (10): 97-104    DOI: 10.11868/j.issn.1001-4381.2018.001438
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能
李诗杰1,*(), 韩奎华2
1 山东建筑大学 热能工程学院, 济南 250101
2 山东大学 能源与动力工程学院, 济南 250012
Preparation and electrochemical properties of algae-based super activated carbon based on "egg-box" structure
Shi-jie LI1,*(), Kui-hua HAN2
1 School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China
2 School of Energy and Power Engineering, Shandong University, Jinan 250012, China
全文: PDF(3063 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

与陆生植物不同,海藻中含有海藻酸和海藻酸盐,其中海藻酸盐主要以海藻酸钙、海藻酸镁等形式存在于细胞壁中。以马尾藻、浒苔、龙须菜、裙带菜、海带和石莼6种海藻为原料,对海藻炭化后得到的碳产物进行盐酸酸洗,除去海藻酸盐中的钙、镁等离子,形成"蛋盒"式初始孔结构,然后采用KOH活化法制备海藻基超级活性炭,研究酸洗预处理对海藻基活性炭孔结构特性以及电化学性能的影响。结果表明:对海藻炭化产物酸洗预处理,不仅明显增大了海藻基活性炭的比表面积,还大幅度提高了活性炭中介孔的含量。海藻基活性炭的电化学性能得到明显改善。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李诗杰
韩奎华
关键词 海藻活性炭超级电容器电化学性能盐酸改性    
Abstract

Different with terrestrial plants, algae contains alginic acid and alginate, and the alginate mainly exists in cell walls in the form of calcium alginate and magnesium alginate. Six kinds of algae, sargassum, enteromorpha, asparagus, undaria, kelp and ulva, were used as raw materials, carbon products from algae carbonization were pickled with hydrochloric acid to remove Ca2+ and Mg2+ ions, etc. from alginate and form "egg-box" initial pore structure. Then the algae-based super activated carbon was prepared by KOH activation method, the effect of pickling pretreatment on the pore structure and electrochemical properties of algae-based activated carbon was studied. The results show that the hydrochloric acid pretreatment can not only increase the specific surface area, but also improve the number of mesoporous of the algae-based activated carbons. The electrochemical performance of algae-based activated carbons is improved after hydrochloric acid pretreatment.

Key wordsalgae    activated carbon    supercapacitor    electrochemical performance    acid pretreatment
收稿日期: 2018-12-12      出版日期: 2019-10-12
中图分类号:  TQ150  
基金资助:山东建筑大学博士科研基金(XNBS1838)
通讯作者: 李诗杰     E-mail: 675767978@163.com
作者简介: 李诗杰(1990-), 男, 讲师, 博士, 研究方向为储能材料, 联系地址:山东省济南市临港开发区凤鸣路1000号山东建筑大学热能工程学院(25010), E-mail:675767978@163.com
引用本文:   
李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
Shi-jie LI, Kui-hua HAN. Preparation and electrochemical properties of algae-based super activated carbon based on "egg-box" structure. Journal of Materials Engineering, 2019, 47(10): 97-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001438      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/97
Sample Ultimate analyses (ad) Proximate analyses (ad)
C H O N S Na Ca Mg M A FC V
Sargassum 41.4 5.4 35.0 3.4 1.7 0.3 1.1 0.4 2.4 10.7 14.9 71.9
Enteromorpha 38.6 4.9 33.5 1.9 0.6 1.0 3.2 1.3 4.9 16.3 15.0 63.8
Asparagus 35.9 3.9 31.8 0.8 0.0 1.2 2.3 2.2 6.8 20.8 14.1 58.3
Undaria 34.8 4.9 32.6 2.3 1.0 0.7 1.6 0.6 8.5 16.0 19.7 55.9
Kelp 38.9 5.2 34.8 1.8 1.0 1.3 2.8 2.2 5.3 13.1 12.7 68.9
Ulva 39.8 6.0 32.8 1.9 0.8 0.6 1.8 2.6 8.5 10.3 10.2 71.0
Table 1  海藻原料的元素分析和工业分析(质量分数/%)
Fig.1  海藻基活性炭的氮气吸附-解吸附等温线
Fig.2  海藻基活性炭的孔径分布
Sample Current density/(A·g-1)
0.1 0.3 0.5 1 3 5 10 30 50
Sargassum 293 271 264 254 247 239 226 214 211
Enteromorpha 327 313 304 287 275 267 257 240 235
Asparagus 296 284 276 266 249 240 228 219 211
Undaria 281 267 252 248 231 225 222 212 203
Kelp 203 189 185 181 171 169 164 152 129
Ulva 269 250 244 235 225 219 209 192 174
Table 3  海藻基活性炭不同电流密度下的比电容
Sample SBET/(m2·g-1) Smic/(m2·g-1) Vtot/(cm3·g-1) Vmic/(cm3·g-1) Dave/nm
Sargassum 3239 3084 2.75 1.93 3.1
Enteromorpha 2697 2563 2.56 1.84 3.5
Asparagus 3099 2948 2.98 1.92 3.3
Undaria 2548 2467 2.93 1.99 4.2
Kelp 2565 2403 1.70 1.33 2.6
Ulva 2866 2776 2.40 1.91 2.9
Table 2  海藻基活性炭的孔结构特性
Fig.3  海藻基活性炭的循环伏安曲线
Fig.4  海藻基活性炭的恒电流充放电曲线
Fig.5  G单元与Ca2+形成的“蛋盒”结构大分子片段
Fig.6  G单元与Ca2+形成的“蛋盒”结构单个片段
Fig.7  海藻炭化产物析出Ca2+形成孔结构原理
Fig.8  盐酸预处理海藻基活性炭孔径分布
Sample Current density/(A·g-1)
0.1 0.3 0.5 1 3 5 10 30 50
Sargassum 327 314 306 298 286 276 268 277 253
Enteromorpha 340 325 318 307 294 284 276 267 262
Asparagus 342 321 310 298 287 277 270 266 260
Undaria 315 291 281 271 263 259 253 247 239
Kelp 260 239 233 225 217 213 208 207 204
Ulva 299 279 270 264 252 243 233 223 221
Table 5  盐酸预处理海藻基活性炭不同电流密度下的比电容
Sample SBET/(m2·g-1) Smic/(m2·g-1) Vtot/(cm3·g-1) Vmic/(cm3·g-1) Dave/nm
Sargassum 3436 3016 3.73 1.97 4.3
Enteromorpha 3492 2986 3.86 1.83 4.5
Asparagus 3348 2976 3.69 1.95 4.4
Undaria 2905 2386 3.93 1.89 4.1
Kelp 2765 2314 2.10 1.24 3.6
Ulva 3252 2735 3.62 1.73 3.9
Table 4  盐酸预处理海藻基活性炭的孔结构特征
Fig.9  盐酸预处理前后马尾藻基活性炭的循环稳定性
1 KARELID V , LARSSON G , BJORLENIUS B . Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon[J]. Journal of Environmental Management, 2017, 193, 163- 171.
2 PATEL M A , LUO F X , SAVARAM K , et al. P and S dual-doped graphitic porous carbon for aerobic oxidation reactions:enhanced catalytic activity and catalytic sites[J]. Carbon, 2017, 114, 383- 392.
doi: 10.1016/j.carbon.2016.11.064
3 MAMAGHANI A H , HAGHIGHAT F , LEE C S , et al. Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J]. Applied Catalysis B, 2017, 203, 247- 269.
doi: 10.1016/j.apcatb.2016.10.037
4 GOMIS-BERENGUER A , VELASCO L F , VELO-GALA I , et al. Photochemistry of nanoporous carbons:perspectives in energy conversion and environmental remediation[J]. Journal of Colloid " Interface Science, 2017, 490, 879- 901.
doi: 10.1016/j.jcis.2016.11.046
5 GUNDOGDU A , DURAN C , SENTURK H B , et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste:equilibrium, kinetic, and thermodynamic study[J]. Journal of Chemical " Engineering Data, 2012, 57 (10): 2733- 2743.
doi: 10.1021/je300597u
6 MARTIN-GULLON I , MARCO-LOZAR J P , CAZORLA-AMOROS D , et al. Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons[J]. Carbon, 1993, 31 (8): 1351- 1354.
doi: 10.1016/0008-6223(93)90097-T
7 BILOE S , GOETZ V , GUILLOT A . Optimal design of an activated carbon for an adsorbed natural gas storage system[J]. Carbon, 2002, 40 (8): 1295- 1308.
doi: 10.1016/S0008-6223(01)00287-1
8 HABILA M A , ALOTHMAN Z A , AL-TAMRAH S A , et al. Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes[J]. Journal of Industrial " Engineering Chemistry, 2015, 32, 336- 344.
doi: 10.1016/j.jiec.2015.09.009
9 SOYLAK M . Determination of trace amounts of copper in high-purity aluminum samples after preconcentration on an activated carbon column[J]. Fresenius Environmental Bulletin, 1998, 7 (7): 383- 387.
10 ODA H , NAKAGAWA Y . Removal of ionic substances from dilute solution using activated carbon electrodes[J]. Carbon, 2003, 41 (5): 1037- 1047.
doi: 10.1016/S0008-6223(03)00013-7
11 YI J , YAN Q , WU C T , et al. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercap-acitors[J]. Journal of Power Sources, 2017, 351, 130- 137.
doi: 10.1016/j.jpowsour.2017.03.036
12 耿煜, 宋燕, 钟明, 等. 酚醛基活性炭布的制备及电化学性能研究[J]. 材料工程, 2011, (10): 1- 4.
doi: 10.3969/j.issn.1001-4381.2011.10.001
12 GENG Y , SONG Y , ZHONG M , et al. Investigation of preparation and electrochemical performance of phenolic resin based activated caebon cloth[J]. Journal of Materials Engineering, 2011, (10): 1- 4.
doi: 10.3969/j.issn.1001-4381.2011.10.001
13 陈英方, 李媛媛, 邓梅根. 超级电容器的原理及应用[J]. 电子元件与材料, 2008, 27 (4): 6- 9.
doi: 10.3969/j.issn.1001-2028.2008.04.002
13 CHEN Y F , LI Y Y , DENG M G . Principles and applications of supercapacitors[J]. Electronic Components and Materials, 2008, 27 (4): 6- 9.
doi: 10.3969/j.issn.1001-2028.2008.04.002
14 PATIL B H , JAGADALE A D , LOKHANDE C D . Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application[J]. Synthetic Metals, 2012, 162 (15/16): 1400- 1405.
15 MILLER J R , SIMON P . Electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
16 LEWANDOWSKI A , GALINSKI M . Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173 (2): 822- 828.
doi: 10.1016/j.jpowsour.2007.05.062
17 BOHLEN O , KOWAL J , SAUER D U . Ageing behaviour of electrochemical double layer capacitors:Part Ⅰ. Experimental study and ageing model[J]. Journal of Power Sources, 2017, 172 (1): 468- 475.
18 XIAO Y , LONG C , ZHENG M T , et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chinese Chemical Letters, 2014, 25 (6): 865- 868.
doi: 10.1016/j.cclet.2014.05.004
19 KLESZYK P , RATAJCZAK P , SKOWRON P , et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon, 2015, 81, 148- 157.
doi: 10.1016/j.carbon.2014.09.043
20 ABIOYE A M , ANI F N . Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors:a review[J]. Renewable " Sustainable Energy Reviews, 2015, 52, 1282- 1293.
doi: 10.1016/j.rser.2015.07.129
21 FARMA R , DERAMAN M , AWITDRUS A , et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresource Technology, 2013, 132 (3): 254- 261.
22 WANG G , LING Y , QIAN F , et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. Journal of Power Sources, 2011, 196 (11): 5209- 5214.
doi: 10.1016/j.jpowsour.2011.02.019
23 KANG D M , LIU Q L , GU J J , et al. "Egg-box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9 (11): 11225- 11233.
doi: 10.1021/acsnano.5b04821
24 JUREWICZ K , BABEL K . Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy " Fuels, 2010, 24 (6): 3429- 3435.
doi: 10.1021/ef901554j
25 BALATHANIGAIMANI M S , SHIM W G , LEE M J , et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electro-chemistry Communications, 2008, 10 (6): 868- 871.
doi: 10.1016/j.elecom.2008.04.003
26 LI X L , HAN C L , CHEN X Y , et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous " Mesoporous Materials, 2010, 131 (1): 303- 309.
27 ZHAO S , WANG C Y , CHEN M M , et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. Journal of Physics " Chemistry of Solids, 2009, 70 (9): 1256- 1260.
doi: 10.1016/j.jpcs.2009.07.004
28 CHEN H B , WANG H B , YANG L F , et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. International Journal of Electrochemical Science, 2012, 7 (6): 4889- 4897.
29 LI X , XING W , ZHUO S P , et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Techn-ology, 2011, 102 (2): 1118- 1123.
doi: 10.1016/j.biortech.2010.08.110
30 李诗杰, 张继刚, 李金晓, 等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46 (7): 157- 164.
30 LI S J , ZHANG J G , LI J X , et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Jourmal of Materials Engineering, 2018, 46 (7): 157- 164.
31 雷文, 赵晓梅, 何平, 等. 碳基超级电容器电极材料的研究进展[J]. 化学通报, 2013, 76 (11): 981- 987.
31 LEI W , ZHAO X M , HE P , et al. Research progress of carbon-based supercapacitor electrode materials[J]. Chemistry Bulletin, 2013, 76 (11): 981- 987.
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[4] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[5] 谢航, 刘纯, 胡灏, 王志伟. Ⅰ型胶原/海藻酸钠/透明质酸复合水凝胶用于血管组织工程细胞负载与3D培养[J]. 材料工程, 2022, 50(11): 26-33.
[6] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[7] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[8] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[9] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[10] 汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
[11] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[12] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[13] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[14] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[15] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn