Preparation and electrochemical properties of algae-based super activated carbon based on "egg-box" structure
Shi-jie LI1,*(), Kui-hua HAN2
1 School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China 2 School of Energy and Power Engineering, Shandong University, Jinan 250012, China
Different with terrestrial plants, algae contains alginic acid and alginate, and the alginate mainly exists in cell walls in the form of calcium alginate and magnesium alginate. Six kinds of algae, sargassum, enteromorpha, asparagus, undaria, kelp and ulva, were used as raw materials, carbon products from algae carbonization were pickled with hydrochloric acid to remove Ca2+ and Mg2+ ions, etc. from alginate and form "egg-box" initial pore structure. Then the algae-based super activated carbon was prepared by KOH activation method, the effect of pickling pretreatment on the pore structure and electrochemical properties of algae-based activated carbon was studied. The results show that the hydrochloric acid pretreatment can not only increase the specific surface area, but also improve the number of mesoporous of the algae-based activated carbons. The electrochemical performance of algae-based activated carbons is improved after hydrochloric acid pretreatment.
KARELID V , LARSSON G , BJORLENIUS B . Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon[J]. Journal of Environmental Management, 2017, 193, 163- 171.
2
PATEL M A , LUO F X , SAVARAM K , et al. P and S dual-doped graphitic porous carbon for aerobic oxidation reactions:enhanced catalytic activity and catalytic sites[J]. Carbon, 2017, 114, 383- 392.
doi: 10.1016/j.carbon.2016.11.064
3
MAMAGHANI A H , HAGHIGHAT F , LEE C S , et al. Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J]. Applied Catalysis B, 2017, 203, 247- 269.
doi: 10.1016/j.apcatb.2016.10.037
4
GOMIS-BERENGUER A , VELASCO L F , VELO-GALA I , et al. Photochemistry of nanoporous carbons:perspectives in energy conversion and environmental remediation[J]. Journal of Colloid " Interface Science, 2017, 490, 879- 901.
doi: 10.1016/j.jcis.2016.11.046
5
GUNDOGDU A , DURAN C , SENTURK H B , et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste:equilibrium, kinetic, and thermodynamic study[J]. Journal of Chemical " Engineering Data, 2012, 57 (10): 2733- 2743.
doi: 10.1021/je300597u
6
MARTIN-GULLON I , MARCO-LOZAR J P , CAZORLA-AMOROS D , et al. Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons[J]. Carbon, 1993, 31 (8): 1351- 1354.
doi: 10.1016/0008-6223(93)90097-T
7
BILOE S , GOETZ V , GUILLOT A . Optimal design of an activated carbon for an adsorbed natural gas storage system[J]. Carbon, 2002, 40 (8): 1295- 1308.
doi: 10.1016/S0008-6223(01)00287-1
8
HABILA M A , ALOTHMAN Z A , AL-TAMRAH S A , et al. Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes[J]. Journal of Industrial " Engineering Chemistry, 2015, 32, 336- 344.
doi: 10.1016/j.jiec.2015.09.009
9
SOYLAK M . Determination of trace amounts of copper in high-purity aluminum samples after preconcentration on an activated carbon column[J]. Fresenius Environmental Bulletin, 1998, 7 (7): 383- 387.
10
ODA H , NAKAGAWA Y . Removal of ionic substances from dilute solution using activated carbon electrodes[J]. Carbon, 2003, 41 (5): 1037- 1047.
doi: 10.1016/S0008-6223(03)00013-7
11
YI J , YAN Q , WU C T , et al. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercap-acitors[J]. Journal of Power Sources, 2017, 351, 130- 137.
doi: 10.1016/j.jpowsour.2017.03.036
GENG Y , SONG Y , ZHONG M , et al. Investigation of preparation and electrochemical performance of phenolic resin based activated caebon cloth[J]. Journal of Materials Engineering, 2011, (10): 1- 4.
doi: 10.3969/j.issn.1001-4381.2011.10.001
CHEN Y F , LI Y Y , DENG M G . Principles and applications of supercapacitors[J]. Electronic Components and Materials, 2008, 27 (4): 6- 9.
doi: 10.3969/j.issn.1001-2028.2008.04.002
14
PATIL B H , JAGADALE A D , LOKHANDE C D . Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application[J]. Synthetic Metals, 2012, 162 (15/16): 1400- 1405.
15
MILLER J R , SIMON P . Electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
16
LEWANDOWSKI A , GALINSKI M . Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173 (2): 822- 828.
doi: 10.1016/j.jpowsour.2007.05.062
17
BOHLEN O , KOWAL J , SAUER D U . Ageing behaviour of electrochemical double layer capacitors:Part Ⅰ. Experimental study and ageing model[J]. Journal of Power Sources, 2017, 172 (1): 468- 475.
18
XIAO Y , LONG C , ZHENG M T , et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chinese Chemical Letters, 2014, 25 (6): 865- 868.
doi: 10.1016/j.cclet.2014.05.004
19
KLESZYK P , RATAJCZAK P , SKOWRON P , et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon, 2015, 81, 148- 157.
doi: 10.1016/j.carbon.2014.09.043
20
ABIOYE A M , ANI F N . Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors:a review[J]. Renewable " Sustainable Energy Reviews, 2015, 52, 1282- 1293.
doi: 10.1016/j.rser.2015.07.129
21
FARMA R , DERAMAN M , AWITDRUS A , et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresource Technology, 2013, 132 (3): 254- 261.
22
WANG G , LING Y , QIAN F , et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. Journal of Power Sources, 2011, 196 (11): 5209- 5214.
doi: 10.1016/j.jpowsour.2011.02.019
23
KANG D M , LIU Q L , GU J J , et al. "Egg-box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9 (11): 11225- 11233.
doi: 10.1021/acsnano.5b04821
24
JUREWICZ K , BABEL K . Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy " Fuels, 2010, 24 (6): 3429- 3435.
doi: 10.1021/ef901554j
25
BALATHANIGAIMANI M S , SHIM W G , LEE M J , et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electro-chemistry Communications, 2008, 10 (6): 868- 871.
doi: 10.1016/j.elecom.2008.04.003
26
LI X L , HAN C L , CHEN X Y , et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous " Mesoporous Materials, 2010, 131 (1): 303- 309.
27
ZHAO S , WANG C Y , CHEN M M , et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. Journal of Physics " Chemistry of Solids, 2009, 70 (9): 1256- 1260.
doi: 10.1016/j.jpcs.2009.07.004
28
CHEN H B , WANG H B , YANG L F , et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. International Journal of Electrochemical Science, 2012, 7 (6): 4889- 4897.
29
LI X , XING W , ZHUO S P , et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Techn-ology, 2011, 102 (2): 1118- 1123.
doi: 10.1016/j.biortech.2010.08.110
LI S J , ZHANG J G , LI J X , et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Jourmal of Materials Engineering, 2018, 46 (7): 157- 164.