Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 66-74    DOI: 10.11868/j.issn.1001-4381.2018.001442
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为
谢红梅1, 蒋斌2,3, 戴甲洪1, 唐昌平4, 李权5, 潘复生2,3
1. 长江师范学院 材料科学与工程学院, 重庆 408100;
2. 重庆大学 材料科学与工程学院, 重庆 400044;
3. 重庆大学 国家镁合金工程技术研究中心, 重庆 400044;
4. 湖南科技大学 材料科学与工程学院, 湖南 湘潭 411105;
5. 重庆科学技术研究院, 重庆 401123
Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy cold rolling
XIE Hong-mei1, JIANG Bin2,3, DAI Jia-hong1, TANG Chang-ping4, LI Quan5, PAN Fu-sheng2,3
1. College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China;
2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
3. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
4. College of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411105, Hunan, China;
5. Chongqing Academy of Science and Technology, Chongqing 401123, China
全文: PDF(5590 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选用石墨烯和氧化石墨烯作为水基润滑添加剂,对比研究两种纳米材料对AZ31镁合金在冷轧过程中的摩擦学性能的影响。采用场发射扫描电镜(FESEM)和拉曼光谱仪(Raman)对石墨烯和氧化石墨烯水基润滑液润滑条件下轧后板材表面形貌和成分进行了分析,探讨了石墨烯和氧化石墨烯作为水基润滑添加剂的润滑机理。结果表明,石墨烯和氧化石墨烯在水中最优含量为0.5%(质量分数),摩擦因数分别为0.132和0.038,磨损体积分别为23.1 mm3和2.59 mm3。同时氧化石墨烯水基润滑液优良的润滑性能降低了镁合金轧制过程中的轧制力,改善了轧后板材表面质量。相同测试条件下,氧化石墨烯水基润滑液的润滑性能优于石墨烯水基润滑液,主要原因是其在水中良好的分散性和在镁合金表面优异的润湿性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢红梅
蒋斌
戴甲洪
唐昌平
李权
潘复生
关键词 石墨烯氧化石墨烯水基添加剂镁合金冷轧摩擦学性能    
Abstract:The tribological properties of garaphene and graphene oxide (GO) as water based additives were investigated for AZ31 Magnesium alloy cold rolling. The morphology and composition of surfaces were characterized by field emission scanning electron microscopy(FESEM) and Raman spectrum. The lubricating mechanism of graphene and graphene oxide(GO) as water-based additives was explored. The results indicate that the best tribological response of the magnesium alloy/steel pairs evaluated is obtained when GO and graphene at a concentration of 0.5%(mass fraction) is added to water. The friction coefficients of graphene nanofluids and GO nanofluids are 0.132 and 0.038, and the wear volumes are 23.1 mm3 and 2.59 mm3. Furthermore, the cold-rolling tests show that the application of GO nanofluids leads to a significant reduction in the rolling force and an improvement in the surface quality of sheets. Under the same testing conditions, the lubricating performance of GO nanofluids are superior to graphene nanofluids, which attributes to the superior dispersion in the water and prominent wetting of the GO nanofluids on the magnesium alloy surface.
Key wordsgraphene    GO    water-based additive    magnesium alloy    cold rolling    tribological property
收稿日期: 2018-12-17      出版日期: 2020-03-18
中图分类号:  TG502.16  
通讯作者: 蒋斌(1975-),男,教授,博士,主要研究方向为镁合金成形,联系地址:重庆市沙坪坝区重庆大学A区材料科学与工程学院(400044),E-mail:jiangbinrong@cqu.edu.cn     E-mail: jiangbinrong@cqu.edu.cn
引用本文:   
谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
XIE Hong-mei, JIANG Bin, DAI Jia-hong, TANG Chang-ping, LI Quan, PAN Fu-sheng. Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy cold rolling. Journal of Materials Engineering, 2020, 48(3): 66-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001442      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/66
[1] 何阳,袁秋红,罗岚等. 镁基复合材料研究进展及新思路[J].航空材料学报, 2018,38(4):26-36. HE Y, YUAN Q H, LUO L, et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials, 2018,38(4):26-36.
[2] DENNIS J E S, JIN K, JOHN V T, et al. Carbon microspheres as ball bearings in aqueous-based lubrication[J]. ACS Applied Materials & Interfaces, 2011,3(7):2215-2218.
[3] SELDA U, AHMET E, GIZEM O S, et al. Effect of asymmetric rolling process on the microstructure,mechanical properties and texture of AZ31 magnesium alloys sheets produced by twin roll casting technique[J]. Journal of Magnesium and Alloys, 2014(2):92-98.
[4] HUANG W J, DU C H, LI Z F, et al. Tribological characteristics of magnesium alloy using N-containing compounds as lubricating additives during sliding[J]. Wear, 2006,260(1):140-148.
[5] HUANG W J, FU Y, WANG J, et al. Effect of chemical structure of borates on the tribological characteristics of magnesium alloy during sliding[J]. Tribology International, 2005,38(8):775-780.
[6] XIA Y Q, JIA Z F, JIA J H. Tribological behavior of AZ91D magnesium alloy against SAE 52100 steel under ionic liquid lubricated conditions[C]//Advanced Tribology. Berlin:Springer, 2010.
[7] YAN L L, YUE W, WANG C B, et al. Comparing tribological behaviors of sulfur- and phosphorus-free organomolybdenum additive with ZDDP and MoDTC[J]. Tribology International, 2012, 53(9):150-158.
[8] CAI M R, ZHOU F, LIU W M. Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly(ethylene glycol) and polyurea grease for steel/steel contacts[J].ACS Applied Materials & Interfaces, 2011,12(3):4580-4592.
[9] PODGORNIK B, KAFEXHIU F, KOSEC T, et al. Friction and anti-galling properties of hexagonal boron nitride (h-BN) in aluminium forming[J]. Wear, 2017,388/389(15):388-389.
[10] 许一,南峰,徐滨士.凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J].材料工程,2016,44(10):41-46. XU Y, NAN F, XU B S.Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016,44(10):41-46.
[11] XIE H, JIANG B, LIU B, et al. An investigation on the tribological performances of the SiO2/MoS2 hybrid nanofluids for magnesium alloy-steel contacts[J]. Nanoscale Research Letters, 2016, 11:329-346.
[12] 蒲吉斌,王立平,薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1):93-112. PU J B,WANG L P,XUE Q J. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology, 2014,34(1):93-112.
[13] SENATORE A, AGOSTINO V D, PETRONE V, et al. Graphene oxide nanosheets as effective friction modifier for oil lubricant:materials, methods and tribological results[J]. ISRN Tribology, 2013,1:1395-1402.
[14] KINOSHITA H, NISHINA Y, ALIAS A A, et al. Tribological properties of mono-layer graphene oxide sheets as water-based lubricant additives[J]. Carbon,2014,66:720-723.
[15] SAMUEL J, RAFIEE J, DHIMANT P, et al. Graphene colloidal suspensions as high performance semi-synthetic metal-working fluids[J]. Journal of Physical Chemistry:C, 2011,115:3410-3415.
[16] 张倩.基于氧化石墨烯的光学生化传感检测研究[D].杭州:浙江大学,2017. ZHANG Q. Optical biochemical sensing detection study based on graphene oxide[D]. Hangzhou:Zhejiang University, 2017.
[17] KIM H J, KIM D E.Water Lubrication of stainless steel using reduced graphene oxide coating[J]. Scientific Reports, 2015,5:17034.
[18] LEVITA G, RESTUCCIA P, RIGHI M C. Graphene and MoS2 interacting with water:a comparison by ab initio calculations[J]. Carbon, 2016, 107:878-884.
[19] LIANG S S, SHEN Z G, YI M, et al. In-situ exfoliated graphene for high-performance water-based lubricants[J]. Carbon, 2016,96:1181-1190.
[20] HE A S, HUANG S Q, YUN J H, et al. Tribological performance and lubrication mechanism of alumina nanoparticle water-based suspensions in ball-on-three-plate testing[J]. Tribology Letters, 2017,65(2):40-51.
[21] WU H, ZHAO J W, XIA W Z, et al. A study of the tribological behaviour of TiO2 nano-additive water-based lubricants[J]. Tribology International, 2017,109:398-408.
[22] CHEN Q, WANG X, WANG Z T, et al. Preparation of water-soluble nanographite and its application in water-based cutting fluid[J]. Nanoscale Research Letters, 2013,8:52-60.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[3] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[4] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[5] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[6] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[9] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[10] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[11] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[12] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[13] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[14] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[15] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn