Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (2): 46-52    DOI: 10.11868/j.issn.1001-4381.2018.001448
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能
许剑轶1,*(), 张国芳1, 胡峰1, 王瑞芬1, 寇勇2, 张胤1
1 内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
2 包钢(集团)公司, 内蒙古 包头 014010
Phase structure and electrochemical performance for super lattice La-Mg-Ni based A5B19 type negative materials
Jian-yi XU1,*(), Guo-fang ZHANG1, Feng HU1, Rui-fen WANG1, Yong KOU2, Yin ZHANG1
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Baogang Group, Baotou 014010, Inner Mongolia, China
全文: PDF(2585 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

感应熔炼制备La0.8-xCexMg0.2Ni3.8x=0,0.1,0.3,0.5),研究Ce替代部分La对La4MgNi19超晶格负极材料相结构及电化学性能的影响。研究表明,La4MgNi19合金相由LaNi5,(La,Mg)2Ni7,(La,Mg)5Ni19(3R-Ce5Co19)相组成。加入Ce后,(La,Mg)2Ni7相消失,出现2H-Pr5Co19结构的(La,Mg)5Ni19相,同时随着Ce替代量的增多,(La,Mg)5Ni19相含量增多,LaNi5相随之减少,Ce加入有利于形成A5B19相,特别是形成2H-Pr5Co19结构。电化学放电容量随着x值的增加呈现先增后减趋势,x=0.1时样品的电化学放电容量380.36 mAh/g最佳。合金电极活化次数、容量保持率和倍率放电性能随着Ce含量增加而增大。H在合金中的扩散速率是影响其倍率放电性能主要因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许剑轶
张国芳
胡峰
王瑞芬
寇勇
张胤
关键词 La-Mg-Ni系A5B19超晶格负极材料稀土Ce替代电化学性能    
Abstract

The quaternary alloys La0.8-xCexMg0.2Ni3.8 (x=0, 0.1, 0.3, 0.5) were prepared by induction melting, and the effects of partial substitution of Ce for La on the phase structure and electrochemical performances of super lattice La4MgNi19 negative materials were investigated. Results show that La4MgNi19 alloys contain LaNi5 phase, (La, Mg)2Ni7(3R-Ce2Ni7 and 2H-Gd2Co7) phase, (La, Mg)5Ni19 (3R-Ce5Co19) phase. The 2H-Pr5Co19 type phase appears while (La, Mg)2Ni7 phase disappears, after partial substitution of Ce for La. The increase of Ce element substitution has led to an obvious increase of the abundance of A5B19 phase and decrease of AB5 phase accordingly. Ce contributes to the formation of A5B19 phase, especially 2H-Pr5Co19 type phase. With the increase of Ce content from 0 to 0.5, the maximum discharge capacity of alloy electroded increases firstly and then decreased. The x=0.1 alloy exhibits a maximum discharge capacity of 380.36 mAh/g. It is also found that this substitution has caused a significant increase in the activation number, the cyclic stability, high-rate discharge ability. The well performance demonstrates that it is the hydrogen diffusion in the alloy that controls the high rate discharge.

Key wordsLa-Mg-Ni based    super lattice A5B19 negative material    rare earth Ce substitution    electrochemical performance
收稿日期: 2018-12-13      出版日期: 2020-03-03
中图分类号:  TG139+.7  
  TG146.4  
基金资助:内蒙古自然科学基金项目(2017MS(LH)0519);内蒙古自然科学基金项目(2017MS(LH)0516);国家自然科学基金(51501095)
通讯作者: 许剑轶     E-mail: xujiany@yeah.net
作者简介: 许剑轶(1974—), 男, 副教授, 研究方向为功能材料, 联系地址:内蒙古包头市昆区阿尔丁大街7号内蒙古科技大学材料与冶金学院(014010), E-mail:xujiany@yeah.net
引用本文:   
许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
Jian-yi XU, Guo-fang ZHANG, Feng HU, Rui-fen WANG, Yong KOU, Yin ZHANG. Phase structure and electrochemical performance for super lattice La-Mg-Ni based A5B19 type negative materials. Journal of Materials Engineering, 2020, 48(2): 46-52.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001448      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/46
xLa/(mg·g-1)Mg/(mg·g-1)Ce/(mg·g-1)Ni/(mg·g-1)Composition formula
0325.6415.650658.71La0.79Mg0.21Ni3.79
0.1285.6813.5745.28655.24La0.70Ce0.11Mg0.19Ni3.80
0.3194.2515.99124.69665.07La0.48Ce0.30Mg0.22Ni3.82
0.5127.0314.34202.54656.18La0.31Ce0.49Mg0.20Ni3.79
Table 1  退火合金成分ICP-AES分析
Fig.1  退火合金XRD(a)和x=0时退火合金XRD全谱拟合图谱(b)
xPhaseSpace groupPhase abundance/%Lattice parameter
a/nmc/nmV/nm3
0Ce2Ni7P63/mmc (194)5.980.49742.48380.53212
Gd2Co7R-3m (166)7.260.50453.62490.79909
Ce5Co19R-3m (160)25.310.50364.83011.06082
CaCu5P6/mmm (191)61.450.50250.39870.08718
0.1Ce5Co19R-3m (160)43.960.50334.81901.05713
Pr5Co19P63/mmc (194)17.810.50383.22040.70780
CaCu5P6/mmm (191)38.230.50230.39860.08709
0.3Ce5Co19R-3m (160)45.040.50274.80861.05233
Pr5Co19P63/mmc (194)24.080.50313.21990.70570
CaCu5P6/mmm (191)30.880.50210.39840.08697
0.5Ce5Co19R-3m (160)21.280.50234.79481.04764
Pr5Co19P63/mmc (194)53.680.50173.21950.70170
CaCu5P6/mmm (191)25.040.50180.39810.08681
Table 2  退火合金晶胞参数和相丰度
Fig.2  退火合金丰度(a)和合金各相的晶胞体积(b)与Ce含量关系曲线
Fig.3  x含量不同时退火合金的背散射电子图像
(a)x=0;(b)x=0.1;(c)x=0.3;(d)x=0.5
Fig.4  合金电极放电容量和循环次数关系曲线
xC1/(mAh·g-1)Cmax/(mAh·g-1)NaHRD900/%S100/%I0/(mA·g-1)IL/(mA·g-1)Voc/V
0324.71352.97372.2471.15213.53440-0.9540
0.1302.30380.36576.8379.82197.63630-0.9535
0.3290.41371.71682.2984.81136.53951-0.9519
0.5273.93363.69679.2286.17163.53733-0.9437
Table 3  合金电极电化学性能参数
Fig.5  合金电极Tafel极化曲线
Fig.6  合金电极的高倍率放电性能曲线
Fig.7  合金电极的线性极化曲线
Fig.8  合金电极电化学阻抗图谱
Fig.9  合金电极阳极极化曲线
1 KADIR K , SAKAI T , UEHARA I . Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers[J]. J Alloy and Comp, 1997, 257, 115- 121.
doi: 10.1016/S0925-8388(96)03132-5
2 MARTYNA D , MAREK N , MIECZYSLAW J , et al. Electrochemical characterization of nanocrystalline hydrogen storage La1.5Mg0.5Ni6.5Co0.5 alloy covered with amorphous nickel[J]. J Alloy and Comp, 2019, 780, 697- 704.
doi: 10.1016/j.jallcom.2018.11.196
3 王瑞芬, 张胤, 许剑轶, 等. 化学镀铜对贮氢合金La0.75Mg0.25Ni3.2Co0.2Al0.1电极性能的影响[J]. 材料工程, 2013, (5): 44- 49.
doi: 10.3969/j.issn.1001-4381.2013.05.009
3 WANG R F , ZHANG Y , XU J Y , et al. Effects of Cu-P coatings on electrochemical properties of La0.75Mg0.25Ni3.2Co0.2Al0.1 hydrogen storage alloy electrode[J]. Journal of Materials Engineering, 2013, (5): 44- 49.
doi: 10.3969/j.issn.1001-4381.2013.05.009
4 魏范松, 胥小丽, 肖佳宁, 等. La4MgNi19-xCox(x=0~2)贮氢合金的相结构和电化学性能[J]. 中国有色金属学报, 2016, 26 (3): 586- 590.
4 WEI F S , XU X L , XIAO J N , et al. Phase structure and electrochemical properties of La4MgNi19-xCox (x=0-2) hydrogen storage alloys[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (3): 586- 590.
5 ZHAO Y M , ZHANG S , LIU X X , et al. Phase formation of Ce5Co19-type super-stacking structure and its effect on electrochemical and hydrogen storage properties of La0.60M0.20Mg0.20Ni3.80 (M=La, Pr, Nd, Gd) compounds[J]. International Journal of Hydrogen Energy, 2018, 43 (37): 17809- 17820.
doi: 10.1016/j.ijhydene.2018.07.183
6 刘黎黎, 闫慧忠, 曹慧, 等. 热处理对A2B7型La0.6Sm0.15Nd0.1Mg0.15Ni3.4Al0.1贮氢合金微观结构和电化学性能的影响[J]. 稀土, 2016, 37 (2): 117- 121.
6 LIU L L , YAN H Z , CAO H , et al. Influence of heat treatment on microstructure and electrochemical properties of A2B7La0.6Sm0.15Nd0.1Mg0.15Ni3.4Al0.1hydrogen strange alloy[J]. Chinese Rare Earths, 2016, 37 (2): 117- 121.
7 李健靓, 王瑶, 张欣, 等. 稀土镁基贮氢合金的研究进展[J]. 金属功能材料, 2013, 20 (4): 49- 53.
7 LI J L , WANG Y , ZHANG X , et al. Research development of La-Mg-Ni system hydride storage alloys[J]. Metallic Functional Materials, 2013, 20 (4): 49- 53.
8 LIU J J , ZHU S , CHENG H H , et al. Enhanced cycling stability and high rate dischargeability of A2B7-type La-Mg-Ni-based alloys by in-situ formed (La, Mg)5Ni19 superlattice phase[J]. J Alloy and Comp, 2019, 777, 1087- 1097.
doi: 10.1016/j.jallcom.2018.11.094
9 LIU J J , HAN S M , LI Y , et al. Phase structures and electrochemical properties of La-Mg-Ni-based hydrogen storage alloys with superlattice structure[J]. Int J of Hydrogen Energy, 2016, 41, 20261- 20275.
doi: 10.1016/j.ijhydene.2016.08.149
10 WU C , YANG S , LI Y , et al. Microstructural evolution and electrochemical properties of the ultra-high pressure treated La0.70Mg0.30Ni3.3 hydrogen storage alloy[J]. J Alloy and Comp, 2016, 665, 231- 239.
doi: 10.1016/j.jallcom.2016.01.039
11 NOWAK M , BALCERZAK M , JURCZYK M . Hydrogen storage and electrochemical properties of mechanically alloyed La1.5-xGdxMg0.5Ni7 (0≤x≤1.5)[J]. Int J Hydrogen Energy, 2018, 43 (18): 8897- 8906.
doi: 10.1016/j.ijhydene.2018.03.130
12 GAO Z J , ZHANG B , LUO Y C , et al. Correlation between phase structure and electrochemical properties of Ce2Ni7-type La-RE-Mg-Ni (RE=Nd, Sm, Y) alloys: a comparative study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89, 183- 190.
doi: 10.1016/j.jtice.2018.05.013
13 ZHANG Y H , LI Y Q , SHANG H W , et al. Electrochemical hydrogen storage performance of as-cast and as-spun RE-Mg-Ni-Co-Al-based alloys applied to Ni/MH battery[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (4): 711- 721.
doi: 10.1016/S1003-6326(18)64703-X
14 ZHANG D , YAMAMOTO T , INUI H , et al. Characterization of stacking faults on basal planes in intermetallic compounds La5Ni19 and La2Ni7[J]. Intermetallics, 2000, 8 (4): 391- 397.
doi: 10.1016/S0966-9795(99)00121-1
15 BUSCHOW K H J , VAN DER GOOT A S . The crystal structure of rare-earth nickel compounds of the type R2Ni7[J]. Journal of the Less Common Metals, 2000, 22, 419- 428.
16 LIU Y F , PAN H G , GAO M X , et al. XRD study on the electrochemical hydriding/dehydriding behavior of the La-Mg-Ni-Co-type hydrogen storage alloys[J]. J Alloy and Comp, 2018, 43 (24): 11079- 11084.
17 ZHANG Q, CHEN Z, LI Y, et al. Comparative investigations on hydrogen absorption-desorption properties of Sm-Mg-Ni compounds: the effect of [SmNi5]/[SmMgNi4] unit ratio[J]. Journal of Physical Chemistry C, 2018, 43(24): 11079-11084
18 LI F , YOUNG K , OUCHI T , et al. Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy[J]. J Alloys Comp, 2009, 471 (1/2): 371- 377.
19 PAN H G , MA J X , WANG C S , et al. Studies on the electrochemical properties of MlNi4.3-xcoAl0.7 hydride alloy electrodes[J]. J Alloys Comp, 1999, 293/295, 648- 652.
doi: 10.1016/S0925-8388(99)00359-X
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[4] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[5] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[6] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[7] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[12] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[13] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn