Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 88-93    DOI: 10.11868/j.issn.1001-4381.2018.001449
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理
周怡然1, 刘虎1,2, 杨金华1, 姜卓钰1, 吕晓旭1, 焦健1
1. 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
2. 中国航发北京航空材料研究院 先进腐蚀与防护航空科技重点实验室, 北京 100095
Reaction mechanism of SiC-TiSi2 by melt infiltration method
ZHOU Yi-ran1, LIU Hu1,2, YANG Jin-hua1, JIANG Zhuo-yu1, LYU Xiao-xu1, JIAO Jian1
1. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2105 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 熔融Si渗透过程伴随着复杂的化学反应及多组分扩散,对该过程进行研究有助于更好地理解熔渗反应机理。本工作采用熔融渗透工艺制备SiC-TiSi2复相陶瓷,在生成SiC基体的同时原位生成TiSi2。通过扫描电子显微镜(SEM)、X射线能谱分析(EDS)和微区X射线衍射(micro-beam XRD)分别对熔融硅区域、Si/SiC界面以及SiC基体的微观结构和相组成进行表征和分析,研究了熔渗工艺制备SiC-TiSi2的反应机理。结果表明:高温下液Si渗入C-TiC预制体,发生化学反应生成SiC、TiSi2以及少量副产物Ti5Si3,其中Ti5Si3主要集中于Si/SiC界面处。随着反应进行,液Si与TiSi2形成液态Ti-Si共晶。该液态共晶通过流动扩散在Si区域中析出TiSi2。而预制体中的少量固态C在液Si中溶解、扩散,并在Si区域生成均匀分布的孤立SiC颗粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周怡然
刘虎
杨金华
姜卓钰
吕晓旭
焦健
关键词 复相陶瓷反应机理TiSi2熔渗工艺    
Abstract:The melt infiltration method is one of the main preparation method of SiC matrix composites. Complex reactions and multi-component diffusion are involved in molten-Si infiltration of a C-based preform. In this study, SiC-TiSi2 was fabricated by Si melt infiltration and the TiSi2 was in-situ formed in the matrix of SiC. In order to explore the reaction mechanism of SiC-TiSi2, SEM, EDS and micro-beam XRD were determined to characterize the phase constitute and micro-structure in different regions along the Si melt infiltration direction. The results demonstrate that SiC, TiSi2 and Ti5Si3 which concentrate on the Si/SiC interface are found to be formed through the Si melt infiltration into the C-TiC preform. With the increase of temperature, the liquid phase of Ti-Si appears when exceeding the Si-TiSi2 eutectic temperature. And the liquid Ti-Si eutectic precipitates TiSi2 in the Si region during the cooling period of the sample. Moreover, the isolated SiC grain in Si region is produced by the precipitation from the dissolution of solid C in liquid Si.
Key wordscomposite ceramic    reaction mechanism    TiSi2    melt infiltration method
收稿日期: 2018-12-17      出版日期: 2019-06-17
中图分类号:  TB332  
通讯作者: 焦健(1976-),男,研究员,博士,研究方向为陶瓷基复合材料,联系地址:北京市81信箱5分箱(100095),E-mail:18601192125@163.com     E-mail: 18601192125@163.com
引用本文:   
周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
ZHOU Yi-ran, LIU Hu, YANG Jin-hua, JIANG Zhuo-yu, LYU Xiao-xu, JIAO Jian. Reaction mechanism of SiC-TiSi2 by melt infiltration method. Journal of Materials Engineering, 2019, 47(6): 88-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001449      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/88
[1] 焦健,陈明伟. 新一代发动机高温材料-陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014(7):62-69. JIAO J, CHEN M W. New generation of high-temperature material for engine-preparation, property and application of ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2014(7):62-69.
[2] BRENNAN J J. Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic-matrix composite[J]. Acta Materialia, 2000, 48(18/19):4619-4628.
[3] MAGNANT J, PAILLER R, LE PETITCORPS Y, et al. Fiber reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33(1):181-190.
[4] JUNG Y I, PARK D J, PARK J H, et al. Effect of TiSi2/Ti3SiC2, matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties[J]. Journal of the European Ceramic Society, 2016, 36(6):1343-1348.
[5] ZHU K S, MA W H, WEI K X, et al. Separation mechanism of TiSi2, crystals from a Ti-Si eutectic alloy via directional solidification[J]. Journal of Alloys and Compounds, 2018, 750:102-110.
[6] GOURBILLEAU F, HILLEL R, NOUET G. Microstructural investigations of CVD codeposited SiC-TiSi2 nanocomposites[J]. Nanostructured Materials, 1995, 6(1/4):345-348.
[7] LI J L, JIANG D, TAN S. Microstructure and mechanical properties of in situ produced SiC/TiSi2 nanocomposites[J]. Journal of the European Ceramic Society, 2000, 20(2):227-233.
[8] ROSLER R S, ENGLE G M. Plasma-enhanced CVD of titanium silicide[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 1984, 2(4):733-737.
[9] LIS J, PAMPUNCH R, RUDNIK T, et al. Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system[J]. Solid State Ionics, 1997, 101/103(11):59-64.
[10] 秦超,吴汀,王连军,等. SPS原位反应制备TiSi2基复合材料的微观结构和性能研究[J].无机材料学报,2008,23(2):209-212. QIN C, WU T, WANG L J, et al. Microstructure and properties of TiSi2-based composites in situ prepared by SPS[J]. Journal of Inorganic Materials, 2008, 23(2):209-212.
[11] 李开雄,吕振林. 熔渗烧结制备Ti3SiC2反应机理的研究[J]. 兵器材料科学与工程, 2009, 32(4):77-80. LI K X, LV Z L. Study on the reaction mechanism of Ti3SiC2by melt infiltration sintering method[J]. Ordnance Material Science and Engineering, 2009, 32(4):77-80.
[12] 吕祥鸿,杨延清. Ti基复合材料界面反应扩散的微观分析[J]. 材料工程, 2008(6):21-24. LU X H, YANG Y Q. Micro-analysis of interfacial reaction diffusion in Ti matrix composite[J]. Journal of Materials Engineering, 2008(6):21-24.
[13] ROY S, DIVINSKI S V, PAUL A. Reactive diffusion in the Ti-Si system and the significance of the parabolic growth constant[J]. Philosophical Magazine, 2014, 94(7):683-699.
[14] LEE Y S, LEE S M. Phase formation during mechanical alloying in the Ti-Si system[J]. Materials Science and Engineering:A, 2007, 449/451:1099-1101.
[15] PAMPUCH R, WALASEK E, BIALOSKORSKI J, et al. Reaction mechanism in carbon-liquid silicon systems at elevated temperature[J]. Ceramics International, 1986, 12(2):99-106.
[16] ZHOU H, SINGH R N. Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon[J]. Journal of the American Ceramic Society, 2010, 78(9):2456-2462.
[17] HON M H, DAVIS R F. Self-diffusion of 30Si in polycrystalline β-SiC[J]. Journal of Material Science, 1980, 14:2073-2080.
[18] HON M H, DAVIS R F. Self-diffusion of 14C in polycrystalline β-SiC[J]. Journal of Material Science, 1979, 14:2411-2421.
[19] 王继平,金志浩,钱军民,等. 反应熔渗法制备C/C-SiC复合材料及其反应机理和动力学的研究进展[J]. 硅酸盐学报, 2005, 33(9):1120-1126. WANG J P, JIN Z H, QIAN J M, et al. Research progress on mechanism and kinetics of C/C-SiC composites prepared by reactive melt infiltration[J]. Journal of the Chinese Ceramic Society, 2005, 33(9):1120-1126.
[20] KRINITCYN M, FU Z W, HARRIS J, et al. Laminated object manufacturing of in-situ synthesized MAX-phase composites[J]. Ceramics International, 2017, 43:9241-9245.
[21] ZOU Y, SUN Z M, TADA S, et al. Synthesis of single-phase Ti3SiC2 with the assistance of liquid phase formation[J]. Journal of Alloys and Compounds, 2007, 441(1):192-196.
[22] BARIN I, SAUERT F, SCHULTZE-RHONHOF E, et al. Thermochemical data of pure substances[M]. Weinheim,Germany:Wiley-VCH, 1997.
[23] MASSALSKI T B, MURRAY J L, BENNET L H, et al. Binary alloy phase diagrams[M]. Materials Park, Ohio,USA:ASM International, 1996.
[24] LI J, HAUSNER H. Reactive wetting in the liquid-silicon/solid-carbon system[J]. Journal of the American Ceramic Society, 2010, 79(4):873-880.
[1] 王丙军, 王晓民, 喇培清. 烧结温度对20% ZrO2(3Y)/Al2O3复相陶瓷力学性能和微观结构的影响[J]. 材料工程, 2015, 43(10): 66-72.
[2] 张瑾, 苏克和, 马咏梅, 曾庆丰, 成来飞, 张立同. 先驱体制备典型陶瓷(C,SiC和BxC)的化学反应机理研究[J]. 材料工程, 2015, 43(10): 102-112.
[3] 解小玲, 赵彩霞, 曹青, 靳利娥, 张怀平. 煤沥青的改性及中间相结构研究[J]. 材料工程, 2012, 0(7): 39-43.
[4] 高焕方, 张胜涛, 罗天元, 全学军, 许俊强, 方丽. AZ31B镁合金表面锌系磷化膜制备工艺及性能研究[J]. 材料工程, 2009, 0(9): 51-55,65.
[5] 田亮, 黄继华, 张志远, 赵兴科, 张华. 用Ti50Cu+W钎料连接Si/SiC复相陶瓷与殷钢的研究[J]. 材料工程, 2008, 0(9): 71-75.
[6] 裴雨辰, 李嘉禄, 于长清, 李淑琴. 原位无压烧结制备Si2N2O-Si3N4复相陶瓷[J]. 材料工程, 2008, 0(5): 4-6,12.
[7] 任鹏刚, 梁国正, 张增平. 双酚A型二氰酸酯及其环氧改性体系的反应性研究[J]. 材料工程, 2008, 0(4): 27-32,37.
[8] 杨祖培, 刘少恒, 高峰, 田长生. PMN基复相弛豫铁电陶瓷电致应变及其温度稳定性的研究[J]. 材料工程, 2005, 0(9): 16-18,21.
[9] 艾云龙, 刘长虹, 左敦稳, 王珉. ZrO2/SiC-WSi2/MoSi2纳米复相陶瓷制备及增韧机制探讨[J]. 材料工程, 2004, 0(1): 33-37.
[10] 杨祖培, 屈绍波, 崔斌, 高峰, 侯育冬, 田长生. PMN和PZN基复相陶瓷的制备及其介电温度稳定性的研究[J]. 材料工程, 2001, 0(4): 22-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn