1 National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
The melt infiltration method is one of the main preparation method of SiC matrix composites. Complex reactions and multi-component diffusion are involved in molten-Si infiltration of a C-based preform. In this study, SiC-TiSi2 was fabricated by Si melt infiltration and the TiSi2 was in-situ formed in the matrix of SiC. In order to explore the reaction mechanism of SiC-TiSi2, SEM, EDS and micro-beam XRD were determined to characterize the phase constitute and micro-structure in different regions along the Si melt infiltration direction. The results demonstrate that SiC, TiSi2 and Ti5Si3 which concentrate on the Si/SiC interface are found to be formed through the Si melt infiltration into the C-TiC preform. With the increase of temperature, the liquid phase of Ti-Si appears when exceeding the Si-TiSi2 eutectic temperature. And the liquid Ti-Si eutectic precipitates TiSi2 in the Si region during the cooling period of the sample. Moreover, the isolated SiC grain in Si region is produced by the precipitation from the dissolution of solid C in liquid Si.
JIAO J , CHEN M W . New generation of high-temperature material for engine-preparation, property and application of ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2014, (7): 62- 69.
doi: 10.3969/j.issn.1671-833X.2014.07.007
2
BRENNAN J J . Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic-matrix composite[J]. Acta Materialia, 2000, 48 (18/19): 4619- 4628.
3
MAGNANT J , PAILLER R , LE PETITCORPS Y , et al. Fiber reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33 (1): 181- 190.
doi: 10.1016/j.jeurceramsoc.2012.07.040
4
JUNG Y I , PARK D J , PARK J H , et al. Effect of TiSi2/Ti3SiC2, matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1343- 1348.
doi: 10.1016/j.jeurceramsoc.2016.01.015
5
ZHU K S , MA W H , WEI K X , et al. Separation mechanism of TiSi2, crystals from a Ti-Si eutectic alloy via directional solidification[J]. Journal of Alloys and Compounds, 2018, 750, 102- 110.
doi: 10.1016/j.jallcom.2018.02.161
6
GOURBILLEAU F , HILLEL R , NOUET G . Microstructural investigations of CVD codeposited SiC-TiSi2 nanocomposites[J]. Nanostructured Materials, 1995, 6 (1/4): 345- 348.
7
LI J L , JIANG D , TAN S . Microstructure and mechanical properties of in situ produced SiC/TiSi2 nanocomposites[J]. Journal of the European Ceramic Society, 2000, 20 (2): 227- 233.
doi: 10.1016/S0955-2219(99)00157-0
8
ROSLER R S , ENGLE G M . Plasma-enhanced CVD of titanium silicide[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 1984, 2 (4): 733- 737.
9
LIS J , PAMPUNCH R , RUDNIK T , et al. Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system[J]. Solid State Ionics, 1997, 101/103 (11): 59- 64.
QIN C , WU T , WANG L J , et al. Microstructure and properties of TiSi2-based composites in situ prepared by SPS[J]. Journal of Inorganic Materials, 2008, 23 (2): 209- 212.
doi: 10.3321/j.issn:1000-324X.2008.02.001
LI K X , LV Z L . Study on the reaction mechanism of Ti3SiC2by melt infiltration sintering method[J]. Ordnance Material Science and Engineering, 2009, 32 (4): 77- 80.
doi: 10.3969/j.issn.1004-244X.2009.04.021
LU X H , YANG Y Q . Micro-analysis of interfacial reaction diffusion in Ti matrix composite[J]. Journal of Materials Engineering, 2008, (6): 21- 24.
doi: 10.3969/j.issn.1001-4381.2008.06.006
13
ROY S , DIVINSKI S V , PAUL A . Reactive diffusion in the Ti-Si system and the significance of the parabolic growth constant[J]. Philosophical Magazine, 2014, 94 (7): 683- 699.
doi: 10.1080/14786435.2013.859759
14
LEE Y S , LEE S M . Phase formation during mechanical alloying in the Ti-Si system[J]. Materials Science and Engineering:A, 2007, 449/451, 1099- 1101.
doi: 10.1016/j.msea.2006.02.247
15
PAMPUCH R , WALASEK E , BIALOSKORSKI J , et al. Reaction mechanism in carbon-liquid silicon systems at elevated temperature[J]. Ceramics International, 1986, 12 (2): 99- 106.
doi: 10.1016/0272-8842(86)90023-4
16
ZHOU H , SINGH R N . Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon[J]. Journal of the American Ceramic Society, 2010, 78 (9): 2456- 2462.
17
HON M H , DAVIS R F . Self-diffusion of 30Si in polycrystalline β-SiC[J]. Journal of Material Science, 1980, 14, 2073- 2080.
18
HON M H , DAVIS R F . Self-diffusion of 14C in polycrystalline β-SiC[J]. Journal of Material Science, 1979, 14, 2411- 2421.
doi: 10.1007/BF00737031
WANG J P , JIN Z H , QIAN J M , et al. Research progress on mechanism and kinetics of C/C-SiC composites prepared by reactive melt infiltration[J]. Journal of the Chinese Ceramic Society, 2005, 33 (9): 1120- 1126.
doi: 10.3321/j.issn:0454-5648.2005.09.015
20
KRINITCYN M , FU Z W , HARRIS J , et al. Laminated object manufacturing of in-situ synthesized MAX-phase composites[J]. Ceramics International, 2017, 43, 9241- 9245.
doi: 10.1016/j.ceramint.2017.04.079
21
ZOU Y , SUN Z M , TADA S , et al. Synthesis of single-phase Ti3SiC2 with the assistance of liquid phase formation[J]. Journal of Alloys and Compounds, 2007, 441 (1): 192- 196.
22
BARIN I , SAUERT F , SCHULTZE-RHONHOF E , et al. Thermochemical data of pure substances[M]. Weinheim, Germany: Wiley-VCH, 1997.
23
MASSALSKI T B , MURRAY J L , BENNET L H , et al. Binary alloy phase diagrams[M]. Materials Park, Ohio, USA: ASM International, 1996.
24
LI J , HAUSNER H . Reactive wetting in the liquid-silicon/solid-carbon system[J]. Journal of the American Ceramic Society, 2010, 79 (4): 873- 880.