Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 144-150    DOI: 10.11868/j.issn.1001-4381.2018.001456
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
表面粗糙度对PS-PVD YSZ陶瓷层性能的影响
毛杰1, 马景涛1,2, 邓畅光1, 邓春明1, 宋进兵1, 刘敏1, 宋鹏2
1. 广东省新材料研究所 现代材料表面工程技术国家工程实验室 广东省现代表面工程技术重点实验室, 广州 510650;
2. 昆明理工大学 材料科学与工程学院, 昆明 650093
Effect of surface roughness on properties of PS-PVD YSZ ceramic coating
MAO Jie1, MA Jing-tao1,2, DENG Chang-guang1, DENG Chun-ming1, SONG Jin-bing1, LIU Min1, SONG Peng2
1. The Key Laboratory of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510650, China;
2. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(3226 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用PS-PVD工艺在预制有NiCoCrAlYTa黏结层的K417G高温合金上制备YSZ陶瓷层;采用万能拉伸试验机、粒子冲刷仪、静态氧化炉等设备测试PS-PVD YSZ陶瓷涂层的结合强度、抗粒子冲刷和抗高温氧化性能;采用SEM和EDS分析涂层表面、截面形貌和元素分布等。结果表明:表面粗糙度对YSZ陶瓷层拉伸结合强度、抗粒子冲刷和抗高温氧化性能的影响很大。随着粗糙度的增大,结合强度先增大而后减小。Ra=0.40 μm表面上沉积的YSZ涂层,其结合强度最高,达到23.5 MPa。拉伸断裂发生在涂层内部,并距离黏结层40~70 μm的位置。随着表面粗糙度的增大,冲刷速率先减小而后增大,Ra=0.40 μm涂层的抗粒子冲刷性能最好,冲刷速率仅为2.8×10-3 g/g,表面起伏小和孔隙率低是涂层具有良好抗粒子冲刷性能的重要原因。不同表面粗糙度制备的YSZ涂层均能生成致密连续的热生长氧化物(TGO)层。粗糙度大则生长的TGO起伏大,更容易导致局部增厚和应力集中而失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛杰
马景涛
邓畅光
邓春明
宋进兵
刘敏
宋鹏
关键词 等离子喷涂-物理气相沉积YSZ陶瓷层表面粗糙度结合强度粒子冲刷高温氧化    
Abstract:YSZ ceramic coating was prepared by PS-PVD process on K417G superalloy prefabricated with NiCoCrAlYTa bond coating. The tensile bond strength, particle erosion resistance and high temperature oxidation resistance of PS-PVD YSZ ceramic coating were tested by the universal tensile testing machine, particle erosion device and static oxidation furnace. The SEM and EDS were used to analyze the surface, cross-section morphology and element distribution. The results show that surface roughness has great influence on tensile bond strength, particle erosion resistance and high temperature oxidation resistance of YSZ ceramic coating. The bonding strength is increased first and then decreased with the increase of surface roughness. The coating prepared on the surface of Ra=0.40 μm has the highest bonding strength of 23.5 MPa. The tensile fracture occurs in the interior of YSZ ceramic coating at a distance of 40-70 μm from the bond coating. The erosion rate is decreased first and then increased with the increase of surface roughness. The coating prepared on the surface of Ra=0.40 μm has the best particle erosion resistance, and the erosion rate is 2.8×10-3 g/g. Small surface fluctuations and low porosity are two important reasons for preventing fast particle erosion. The YSZ coatings prepared with different surface roughness can produce dense and continuous TGO layer. Larger surface roughness causes larger fluctuation of growing TGO layer, which is more likely to cause local thickening and stress concentration, thus leading to failure.
Key wordsplasma spray-physical vapor deposition    YSZ ceramic coating    surface roughness    bond strength    particle erosion    high temperature oxidation
收稿日期: 2018-12-17      出版日期: 2020-05-28
中图分类号:  TG174.453  
通讯作者: 毛杰(1979-),男,教授级高工,博士,研究方向为先进高温功能涂层,联系地址:广州市天河区长兴路363号广东省新材料研究所现代材料表面工程技术国家工程实验室(510650),E-mail:jmao0901@163.com     E-mail: jmao0901@163.com
引用本文:   
毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
MAO Jie, MA Jing-tao, DENG Chang-guang, DENG Chun-ming, SONG Jin-bing, LIU Min, SONG Peng. Effect of surface roughness on properties of PS-PVD YSZ ceramic coating. Journal of Materials Engineering, 2020, 48(5): 144-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001456      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/144
[1] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(12):280-284.
[2] CLARKE D R, OECHSNER M, PADTURE N P. Thermal barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10):891-898.
[3] 郑蕾,郭洪波,郭磊,等. 新一代超高温热障涂层研究[J]. 航空材料学报, 2012, 32(6):14-24. ZHENG L, GUO H B, GUO L, et al. New generation thermal barrier coatings for ultrahigh temperature applications[J]. Journal of Aeronautical Materials, 2012, 32(6):14-24.
[4] 周益春,刘奇星,杨丽,等. 热障涂层的破坏机理与寿命预测[J]. 固体力学学报, 2010, 31(5):504-531. ZHOU Y C, LIU Q X, YANG L, et al. Failure mechanisms and life prediction of thermal barrier coatings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5):504-531.
[5] 蔡妍,李建平,何利民,等. 电子束物理气相沉积热障涂层抗冲刷性能研究[J]. 真空, 2014, 51(2):27-30. CAI Y,LI J P,HE L M, et al. Research on erosion resistance of EB-PVD thermal barrier coatings[J]. Vacuum, 2014, 51(2):27-30.
[6] GUO H B, VAßEN R, STOVER D. Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings[J]. Surface and Coatings Technology, 2005, 192:48-56.
[7] 于海涛,牟仁德,谢敏,等. 热障涂层的研究现状及其制备技术[J]. 稀土, 2010, 31(5):83-88. YU H T, MU R D, XIE M, et al. Evolution status and processing technologies of thermal barrier coatings[J]. Chinese Rare Earths, 2010, 31(5):83-88.
[8] SONG P, NAUMENKO D, VAßEN R, et al. Effect of oxygen content in NiCoCrAlY bondcoat on the lifetimes of EB-PVD and APS thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 221:207-213.
[9] SHEN Z Y, HE L M, XU Z H, et al. Morphological evolution and failure of LZC/YSZ DCL TBCs by electron beam-physical vapor deposition[J]. Materialia, 2018, 4:340-347.
[10] SHEN Z Y, HE L M, XU Z H. Rare earth oxides stabilized La2Zr2O7 TBCs:EB-PVD, thermal conductivity and thermal cycling life[J]. Surface and Coatings Technology, 2019, 357:427-432.
[11] Von NIESSEN K, GINDRAT M. Plasma spray-PVD:a new thermal spray process to deposit out of the vapor phase[J]. Journal of Thermal Spray Technology, 2011, 20(4):736-743.
[12] SAMPATH S, SCHULZ U, JARLIGO M O, et al. Processing science of advanced thermal-barrier systems[J]. MRS Bulletin, 2012, 37(10):903-910.
[13] SHINOZAWA A, EGUCHI K, KAMBARA M, et al. Feather-like structured YSZ coatings at fast rates by plasma spray physical vapor deposition[J]. Journal of Thermal Spray Technology, 2010, 19(1/2):190-197.
[14] MAUER G, HOSPACH A, VAßEN R. Process development and coating characteristics of plasma spray-PVD[J]. Surface and Coatings Technology, 2013, 220:219-224.
[15] GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 237:51-55.
[16] MAO J, DENG Z Q, LIU M, et al. Regional characteristics of YSZ coating prepared by expanded Ar/He/H plasma jet at very low pressure[J]. Surface and Coatings Technology, 2017, 328:240-247.
[17] DENG Z Q, MAO J, LIU M, et al. Regional characteristic of 7YSZ coatings prepared by PS-PVD technique[J/OL]. Rare Metals, doi:s12598-018-1041-y.
[18] MAO J, LIU M, DENG C G, et al. Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology[J]. Journal of Engineering Materials and Technology, 2017, 139(4):041003.
[19] GAO L H, WEI L L, GUO H B, et al. Deposition mechanisms of yttria stabilized zirconia coatings during plasma spray physical vapor deposition[J]. Ceramics International, 2016, 42(4):5530-5536.
[20] ZHANG X F, ZHOU K S, DENG C G, et al. Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition[J]. Journal of the European Ceramic Society, 2016, 36(3):697-703.
[21] DENG Z Q, LIU M, MAO J, et al. Stage growth of columnar 7YSZ coating prepared by plasma spray-physical vapor deposition[J]. Vacuum, 2017, 145(11):39-46.
[22] DENG Z Q, ZHANG X F, ZHOU K S, et al. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation[J]. Chinese Journal of Aeronautics, 2018, 31(4):820-825.
[23] NICHOLLS J R, DEAKIN M J, RICKERBY D S. A comparison between the erosion behaviors of thermal spray and electron beam physical vapor deposition thermal barrier coating[J]. Wear, 1999, 233/235(3):352-361.
[24] WELLMAN R G, NICHOLLS J R. A review of the erosion of thermal barrier coatings[J]. Journal of Physics:D, 2007, 40(16):293-305.
[25] 杨丽,周益春,齐莎莎. 热障涂层的冲蚀破坏机理研究进展[J]. 力学进展, 2012, 42(6):704-721. YANG L, ZHOU Y C, QI S S. Research progress in erosion mechanisms of thermal barrier coatings[J]. Advances in Mechanics, 2012, 42(6):704-721.
[1] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[2] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[3] 张晓颖, 荣新山, 徐吉成, 周向同, 吴智仁. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
[4] 任德均, 李锐, 王明连, 刘九山. 磁场对磁流变弹性体表面特性的影响[J]. 材料工程, 2019, 47(3): 79-86.
[5] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[6] 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46(6): 120-124.
[7] 王朴, 杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4): 58-65.
[8] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[9] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[10] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[11] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[12] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[13] 王艳松, 李文亚, 杨夏炜, 付颖. 冷压焊界面结合机理与结合强度研究现状[J]. 材料工程, 2016, 44(4): 119-130.
[14] 景鹏展, 朱姝, 余木火, 袁象恺, 刘卫平, 姜正飞. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3): 21-27.
[15] 张林伟, 王鲁, 王全胜, 陆磊, 宁先进. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程, 2016, 44(11): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn