Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 21-32    DOI: 10.11868/j.issn.1001-4381.2018.001461
  综述 本期目录 | 过刊浏览 | 高级检索 |
六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展
孙川1, 邱学青1, 覃发梅1, 丁子先1, 方志强2
1. 华南理工大学 化学与化工学院 广东省绿色精细化学产品工程技术研究开发中心, 广州 510641;
2. 华南理工大学 制浆造纸工程国家重点实验室, 广州 510641
Research progress in liquid phase exfoliation of boron nitride and their applications in thermal management of electronic devices
SUN Chuan1, QIU Xue-qing1, QIN Fa-mei1, DING Zi-xian1, FANG Zhi-qiang2
1. Key Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
2. Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
全文: PDF(5008 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 六方氮化硼纳米片(BNNS)具有优异的导热性、绝缘性、化学稳定性、耐高温性,在电子器件热管理领域具有广泛的应用前景。然而,如何快速、规模化地获得高质量的BNNS仍是其商业应用所面临一个重要挑战。液相剥离法是制备BNNS最有前景的方法之一,具有工艺简单、纳米片质量高、可规模化生产等优点。本文首先总结了近年来BNNS的液相剥离方法,重点介绍3种用于液相剥离BNNS的方法(h-BN剥离的溶剂选择、h-BN的非共价键改性以及共价键改性);其次,深入探讨了上述3种方法的剥离机理以及存在的不足(有机溶剂污染环境问题,部分修饰剂相容性差,共价键改性困难)。随着剥离分散机理的深入研究,液相剥离法将满足高质量高效率的BNNS的制备需求,使其在电子器件热管理领域发挥重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙川
邱学青
覃发梅
丁子先
方志强
关键词 六方氮化硼液相剥离电子器件热管理    
Abstract:Boron nitride nanosheets (BNNS) exhibit prominent thermal conductivity, good electrical insulation, as well as high chemical and thermal stability, thus showing their promising application in thermal management of electronic devices. However, it is still challenging to obtain BNNS with high quality by facile and scalable production methods. Liquid phase exfoliation is considered to be one of the most promising methods to prepare BNNS due to its facile and scalable preparation procedure of nanosheets with high quality. Recent advances in liquid phase exfoliation methods for the preparation of BNNS were summarized in this review, with specially focusing on solvent selection of h-BN exfoliation, non-covalent and covalent surface modification of boron nitride. Furthermore, the exfoliation mechanism of the above three methods and the existing shortcomings were discussed in details(environmental problems caused by organic solvents,poor compatibility in some modifiers,difficulties in covalent bond modification).With the further study of the exfoliation mechanism,the liquid phase exfoliation method will be able to meet the requirement of high quality and high efficiency preparation of BNNS,making it play an important role in the thermal management of electronic devices.
Key wordshexagonal boron nitride    liquid phase exfoliation    electric device    thermal management
收稿日期: 2018-12-20      出版日期: 2019-12-17
中图分类号:  TB383.1  
基金资助: 
通讯作者: 方志强(1984-),男,副研究员,博士,研究方向为生物质纳米材料、二维纳米材料及绿色柔性电子器件等,联系地址:广东省广州市天河区五山路华南理工大学(510641),E-mail:mszhqfang@scut.edu.cn     E-mail: mszhqfang@scut.edu.cn
引用本文:   
孙川, 邱学青, 覃发梅, 丁子先, 方志强. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019, 47(12): 21-32.
SUN Chuan, QIU Xue-qing, QIN Fa-mei, DING Zi-xian, FANG Zhi-qiang. Research progress in liquid phase exfoliation of boron nitride and their applications in thermal management of electronic devices. Journal of Materials Engineering, 2019, 47(12): 21-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001461      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/21
[1] 李响. 导热材料对某相变储热器性能的影响[J]. 金属功能材料, 2018(2):53-56. LI X. Effects of thermal conductive material on the performance of a phase change heat storage device[J].Metallic Functitonal Materials, 2018(2):53-56.
[2] BELHARDJ S, MIMOUNI S, SAIDANE A, et al. Using microchannels to cool microprocessors:a transmission-line-matrix study[J]. Microelectronics Journal, 2003, 34(4):247-253.
[3] LUO W, WANG Y, HITZ E, et al. Solution processed boron nitride nanosheets:synthesis, assemblies and emerging applications[J]. Advanced Functional Materials, 2017, 27(31):1701450.
[4] WAN J, LACEY S D, DAI J, et al. Tuning two-dimensional nanomaterials by intercalation:materials, properties and applications[J]. Chemical Society Reviews, 2016, 45(24):6742-6765.
[5] ZHENG Z, COX M, LI B. Surface modification of hexagonal boron nitride nanomaterials:a review[J]. Journal of Materials Science, 2018, 53(1):66-99.
[6] SONG L, CI L, LU H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8):3209-3215.
[7] 张平奇. 氮化硼纳米片的规模化制备工艺探索[D]. 大连:大连理工大学, 2016. ZHANG P Q. Investigation of the scale-up preparation process of hexagonal boron nitride nanosheets[D]. Dalian:Dalian University of Technology, 2016.
[8] WANG Y, SHI Z, YIN J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole[J]. Journal of Materials Chemistry, 2011, 21(30):11371-11377.
[9] WANG Y, ZHAO L, SHI L, et al. Methane activation over a boron nitride catalyst driven by in situ formed molecular water[J]. Catalysis Science & Technology, 2018, 8(8):2051-2055.
[10] DONG R, ZHANG T, FENG X. Interface-assisted synthesis of 2D materials:trend and challenges[J]. Chemical Reviews, 2018,118(13):6189-6253.
[11] WANG L, WU B, CHEN J, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Advanced Materials, 2014, 26(10):1559-1564.
[12] KIM K K, HSU A, JIA X, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 2012, 12(1):161-166.
[13] PACILE D, MEYER J C, GIRIT C O, et al. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Applied Physics Letters, 2008, 92(13):133107.
[14] QIU S, HOU Y, XING W,et al. Self-assembled supermolecular aggregate supported on boron nitride nanoplatelets for flame retardant and friction application[J]. Chemical Engineering Journal,2018,349(1):223-234.
[15] CHEN X, DOBSON J F, RASTON C L. Vortex fluidic exfoliation of graphite and boron nitride[J]. Chemical Communications, 2012, 48(31):3703-3705.
[16] 刘闯,张力,李平,等. 氮化硼二维纳米材料剥离制备技术研究进展[J]. 材料工程, 2016, 44(3):122-128. LIU C, ZHANG L, LI P, et al. Research progress in boron nitride two-dimensional nanomaterials stripping technology[J]. Journal of Materials Engineering, 2016, 44(3):122-128.
[17] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9):563-568.
[18] JIAN F S, YONG M H, JING J W, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Letters, 2015, 15(8):5449-5454.
[19] MANNA K, HUANG H N, LI W T, et al. Toward understanding the efficient exfoliation of two-dimensional layered materials by water-assisted cosolvent liquid phase exfoliation[J]. Chemistry of Materials, 2016, 28(21):7586-7593.
[20] ZHI C, BANDO Y, TANG C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Advanced Materials, 2010, 21(28):2889-2893.
[21] KUANG Z Q, CHEN Y L, LU Y L,et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14):1655-1659.
[22] WARNER J H, RUMMELI M H, ALICJA B, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3):1299-1304.
[23] CAO L, EMAMI S, LAFDI K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase[J]. Materials Express, 2014, 4(2):165-171.
[24] GUARDIA L, PAREDES J, ROZADA R, et al. Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants[J]. RSC Advances, 2014, 4(27):14115-14127.
[25] SONG X, GAO J, GAO T, et al. Wafer-scale CVD growth of monolayer hexagonal boron nitride with large domain size by Cu foil enclosure approach[J]. Physics, 2015, 8(1):1-7.
[26] CHEN H, LIU B, YANG Q, et al. Facile one-step exfoliation of large-size 2D materials via simply shearing in triethanolamine[J]. Materials Letters, 2017,199:124-127.
[27] WANG N, YANG G, WANG H, et al. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets[J]. Materials Today, 2018,27:33-42.
[28] ZENG X, SUN J, YAO Y, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano, 2017, 11(5):5167-5178.
[29] PAREDES J I, VILLARRODIL S. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials:a review of recent progress and applications[J]. Nanoscale, 2016, 8(34):15389-15413.
[30] SONG N, JIAO J, CUI S, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Appl Mater Interfaces, 2017, 9(3):2924-2932.
[31] LI Y, ZHU H, SHEN F, et al. Nanocellulose as green dispersant for two-dimensional energy materials[J]. Nano Energy, 2015, 13:346-354.
[32] HAJIAN A, LINDSTROM S B, PETTERSSON T, et al. Understanding the dispersive action of nanocellulose for carbon nanomaterials[J]. Nano Letters, 2017, 17(3):1439.
[33] BOURLINOS A B, GEORGAKILAS V, ZBORIL R, et al. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes[J]. Solid State Communications, 2009, 149(47):2172-2176.
[34] HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes:mixing, sonication, stabilization, and composite properties[J]. Polymers, 2012, 4(1):275-295.
[35] GUISEPPI-ELIE A, CHOI S H, GECKELER K E, et al. Ultrasonic processing of single-walled carbon nanotube-glucose oxidase conjugates:interrelation of bioactivity and structure[J]. Nano Biotechnology, 2008, 4(1/4):9-17.
[36] AYANVARELA M, PAREDES J I, GUARDIA L, et al. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer[J]. ACS Applied Materials & Interfaces, 2015, 7(19):10293-10307.
[37] WALCH N J, NABOK A, DAVIS F, et al. Characterisation of thin films of graphene-surfactant composites produced through a novel semi-automated method[J]. Beilstein J Nanotechnol, 2016, 7(1):209-219.
[38] PARVIZ D, DAS S, AHMED H S, et al. Dispersions of non-covalently functionalized graphene with minimal stabilizer[J]. ACS Nano, 2012, 6(10):8857-8867.
[39] MUNUERA J M, PAREDES J I, VILLAR-RODIL S, et al. High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types[J]. Carbon, 2015, 94(15):729-739.
[40] FERNANDEZ-MERINO M J, VILLAR-RODIL S, PAREDES J I, et al. Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide[J]. Carbon, 2013, 63(2):30-44.
[41] SHI M, ZHANG X, WANG X, et al. Direct liquid-phase exfoliation of graphite to produce defect-free graphene[J]. Journal of Nanjing Normal University, 2014,14(2):1-7.
[42] DE S, KING P J, LOTYA M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions.[J]. Small, 2010, 6(3):458-464.
[43] SMITH R J, KING P J, LOTYA M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34):3944-3948.
[44] MING S, CHEN G, HE J, et al. Highly transparent and self-extinguishing nanofibrillated cellulose-monolayer clay nanoplatelet hybrid films[J]. ACS Journal of Surfaces & Colloids, 2017, 33(34):8455.
[45] MA T Y, TANG Y, DAI S, et al. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet:an excellent metal-/label-free biosensing platform[J]. Small, 2014, 10(12):2382-2389.
[46] BARSKI A, CUDDAPAH S K, ROH T, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4):823-837.
[47] WANG X, WU P. Aqueous phase exfoliation of two-dimensional materials assisted by thermo-responsive polymeric ionic liquid and their applications in stimuli-responsive hydrogel and highly thermally conductive film[J]. ACS Applied Materials & Interfaces, 2018, 10(3):2504-2514.
[48] LIN Y, WILLIAMS T V, XU T, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water[J]. Journal of Physical Chemistry C, 2011, 115(6):2679-2685.
[49] HAN J, LI Y, LI X, et al. Functionalization of hexagonal boron nitride in large scale by a low-temperature oxidation route[J]. Materials Letters, 2016, 175:244-247.
[50] NAZAROV A S, DEMIN V N, GRAYFER E D, et al. Functionalization and dispersion of hexagonal boron nitride (h-BN) nanosheets treated with inorganic reagents[J]. Chem Asian J, 2012, 7(3):554-560.
[51] FAN D,JIN F,LIV J,et al.Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis[J].Ceramics International,2016,42(6),7155-7163.
[52] LEI W, MOCHALIN V N, LIU D, et al. Boron nitride colloidal solutions,ultralight aerogels and freestanding membranes thro-ugh one-step exfoliation and functionalization[J]. Nature Communications, 2015, 6:8849.
[53] LEI W, DAN L, YING C. Highly crumpled boron nitride nanosheets as adsorbents:scalable solvent-less production[J]. Advanced Materials Interfaces, 2015, 2(3):1-6.
[54] LI L H, CHEN Y, BEHAN G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. Journal of Materials Chemistry, 2011, 21(32):11862-11866.
[55] LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling[J]. Nano Letters, 2015, 15(2):1238-1244.
[56] ZHI C, BANDO Y, TERAO T, et al. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2010, 19(12):1857-1862.
[57] XIE B H, HUANG X, ZHANG G J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers[J]. Composites Science & Technology, 2013, 85(9):98-103.
[58] ZENG X, YE L, YU S, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale, 2015, 7(15):6774-6781.
[59] AKBULUT M, SCHOLAR E A. Two-dimensional nanomaterials in thermal management applications:further efforts are needed to achieve full potential and wider realization[J]. IEEE Nanotechnology Magazine, 2018, 12(4):19-27.
[60] LIN Y, CONNELL J W. Advances in 2D boron nitride nanostructures:nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale, 2012, 4(22):6908-6939.
[61] WANG Y, XU L, YANG Z, et al. High temperature thermal management with boron nitride nanosheets[J]. Nanoscale, 2017, 10(1):167-173.
[62] SHIN Y K, LEE W S, YOO M J, et al. Effect of BN filler on thermal properties of HDPE matrix composites[J]. Ceramics International, 2013, 39:569-573.
[63] GU J, XU S, ZHUANG Q, et al. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(2):784-790.
[64] GU H, LIU C, ZHU J, et al. Introducing advanced composites and hybrid materials[J]. Advanced Composites & Hybrid Materials, 2018, 1(1):1-5.
[65] WANG Y, WU G, KOU K, et al. Mechanical, thermal conductive and dielectrical properties of organic montmorillonite reinforced benzoxazine/cyanate ester copolymer for electronic packaging[J]. Journal of Materials Science Materials in Electronics, 2016, 27(8):8279-8287.
[66] TRIGUI A, KARKRI M, KRUPA I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material[J]. Energy Conversion & Management, 2014, 77(1):586-596.
[67] ZHU H, LI Y, FANG Z, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets[J]. ACS Nano, 2014, 8(4):3606-3613.
[68] LIN Z, MCNAMARA A, LIU Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation[J]. Composites Science & Technology, 2014, 90(2):123-128.
[69] ZHOU L, YANG Z, LUO W, et al. Thermally conductive, electrical insulating, optically transparent bi-layer nanopaper[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28838-28843.
[70] WANG X, PAKDEL A, ZHANG J, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties[J]. Nanoscale Research Letters, 2012, 7(1):662.
[71] WU Y, XUE Y, QIN S, et al. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management application[J]. ACS Applied Materials & Interfaces, 2017, 9(49):43163-43170.
[72] BHANG S J, KIM H, KIM K R, et al. Boron nitride-based paint with high heat dissipation performance[J]. Physica Status Solidi(a), 2018,216(2):1-6.
[73] HE Y, WANG Q, LIU W, et al. Functionalization of boron nitride nanoparticles and their utilization in epoxy composites with enhanced thermal conductivity[J]. Physica Status Solidi(a), 2014, 211(3):677-684.
[74] FANG X, FAN L, DING Q, et al. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80:103-109.
[75] YANG Z, ZHOU L, LUO W, et al. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management[J]. Nanoscale, 2016, 8(46):19326-19333.
[1] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[2] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[3] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[4] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[5] 陈港, 彭从星, 况宇迪, 曾勇, 朱朋辉, 姚日晖, 宁洪龙, 方志强. 纳米纸衬底的制备、性能及其在柔性电子器件中的应用[J]. 材料工程, 2018, 46(6): 1-10.
[6] 何鹏, 耿慧远. 先进热管理材料研究进展[J]. 材料工程, 2018, 46(4): 1-11.
[7] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
[8] 刘慧丛, 邢阳, 李卫平, 朱立群. 湿热贮存环境下电子器件表面镀层的腐蚀研究[J]. 材料工程, 2010, 0(2): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn