Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 55-62    DOI: 10.11868/j.issn.1001-4381.2018.001474
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
扫描路径对激光立体成形TC4构件热-力场的影响
鹿旭飞1,2, 林鑫1,2, 马良1,2, 曹阳1,2, 黄卫东1,2
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 西北工业大学 金属高性能增材制造与创新设计工业和信息化部重点实验室, 西安 710072
Effect of scanning path on thermo-mechanical field of laser solid forming TC4 part
LU Xu-fei1,2, LIN Xin1,2, MA Liang1,2, CAO Yang1,2, HUANG Wei-dong1,2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(6014 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为减缓激光立体成形过程中由于大的热梯度导致的残余应力和变形,首先采用原位测量监测成形过程中基板的温度及变形演化,并以此校验有限元模型,然后利用校准模型研究不同扫描路径对激光立体成形TC4钛合金构件热-力场演化行为的影响。结果表明:模拟结果与实验吻合良好。最大热梯度和最大拉应力均出现在第一层扫描过程中,温度梯度随沉积层数增加而逐渐减小。长边单向扫描方式下基板的变形量最大,而采用短边往复扫描方式下残余应力和变形最小;采用棋盘格扫描方式能有效减小基板的变形,但不能减小构件的残余应力。另外,基板的横向弯曲变形能有效抑制基板的纵向弯曲,而相变诱导的应力释放对激光立体成形构件的残余应力和变形具有显著的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鹿旭飞
林鑫
马良
曹阳
黄卫东
关键词 扫描路径热-力场激光立体成形TC4合金有限元分析    
Abstract:In order to mitigate both residual stress and distortion induced by large thermal gradient in laser solid forming (LSF) process, the in-situ measurement first was used to monitor the thermal and distortion evolutions of the substrate during LSF and to calibrate the finite element model. Using the validated model, the effect of different scanning paths on the evolution of thermo-mechanical fields in LSF was analysed. The results show that good agreement is obtained between the numerical results and the experimental measurements. The maximum thermal gradient and the maximum tensile stress occur in the deposition of the first layer, and with the increasing of the layers, the temperature gradient is reduced gradually. The largest distortion is resulted from the long edge unidirectional scanning mode while the minimum residual stress and distortion is produced by short edge reciprocating scanning. The checkerboard scanning method can effectively reduce distortion of the substrate while hardly reduce the residual stress. In addition, the transverse bending of the substrate can notably curb the longitudinal bending of the substrate. Stress relaxation induced by the phase transformation has a significant effect on both residual stress and distortion of LSF part.
Key wordsscanning path    thermo-mechanical field    laser solid forming    TC4 alloy    finite element analysis
收稿日期: 2018-12-27      出版日期: 2019-12-17
中图分类号:  TN249  
  TG356.23  
基金资助: 
通讯作者: 林鑫(1973-),男,教授,博士,研究方向:高性能复杂金属构件激光增材制造,联系地址:西安市碑林区友谊西路127号西北工业大学公字楼(710072),E-mail:xlin@nwpu.edu.cn     E-mail: xlin@nwpu.edu.cn
引用本文:   
鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
LU Xu-fei, LIN Xin, MA Liang, CAO Yang, HUANG Wei-dong. Effect of scanning path on thermo-mechanical field of laser solid forming TC4 part. Journal of Materials Engineering, 2019, 47(12): 55-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001474      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/55
[1] 黄卫东,李延民,冯莉萍,等. 金属材料激光立体成形技术[J]. 材料工程,2002(3):40-43. HUANG W D,LI Y M,FENG L P,et al. Laser solid forming of metal powder materials[J]. Journal of Materials Engineering, 2002(3):40-43.
[2] HUANG W D, LIN X. Research progress in laser solid forming of high-performance metallic components at the state key laboratory of solidification processing of China[J]. 3D Printing and Additive Manufacturing, 2014, 1(3):156-165.
[3] LU X F, LIN X, CHIUMENTI M, et al. In situ measurements and thermo-mechanical simulation of Ti-6Al-4V laser solid forming processes[J]. International Journal of Mechanical Sciences, 2019, 153:119-130.
[4] CAO J, GHARGHOURI M A, NASH P. Finite element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237:409-419.
[5] LU X F, LIN X, CHIUMENTI M, et al. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition:modelling and experimental calibration[J]. Additive Manufacturing, 2019, 26:166-179.
[6] PEYRE P, AUBRY P, FABBRO R, et al. Analytical and numerical modelling of the direct metal deposition laser process[J]. Journal of Physics D:Applied Physics, 2008, 41(2):25403.
[7] ANCA A, FACHINOTTI V D, ESCOBAR-PALAFOX G, et al. Computational modelling of shaped metal deposition[J]. International Journal for Numerical Methods in Engineering, 2011, 85(1):84-106.
[8] MARIMUTHU S, CLARK D, ALLEN J, et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 227(9):1987-1999.
[9] LUNDBACK A, LINDGREN L E. Modelling of metal deposition[J]. Finite Elements in Analysis and Design, 2011, 47(10):1169-1177.
[10] LUNDBACK A, PEDERSON R, COLLIANDER M H, et al. Modeling and experimental measurement with synchrotron radiation of residual stresses in laser metal deposited Ti-6Al-4V[C]//Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA:John Wiley & Sons, Inc, 2016:1279-1282.
[11] CHIUMENTI M, CERVERA M, SALMI A, et al. Finite element modeling of multi-pass welding and shaped metal deposition processes[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37/40):2343-2359.
[12] DENLINGER E R, HEIGEL J C, MICHALERIS P, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys[J]. Journal of Materials Processing Technology, 2015, 215:123-131.
[13] DENLINGER E R, HEIGEL J C, MICHALERIS P. Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V[J]. Proceedings of the Institution of Mechanical Engineers Part B, 2015, 229(10):1803-1813.
[14] DENLINGER E R, MICHALERIS P. Effect of stress relaxation on distortion in additive manufacturing process modeling[J]. Additive Manufacturing, 2016, 12:51-59.
[15] LU X F, LIN X, CHIUMENTI M, et al. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V[J]. Additive Manufacturing, 2018, 21:30-40.
[16] 杨光,丁林林,王向明,等. 扫描路径对激光修复钛合金残余应力与变形的影响[J].红外与激光工程,2015,44(10):2926-2932. YANG G, DING L L, WANG X M, et al. Influence of scanning path on residual stress and distortion of laser repairing titanium alloy[J]. Infrared & Laser Engineering, 2015, 44(10):2926-2932.
[17] 卞宏友,杨光,李英,等. 金属激光成形分组平行扫描路径生成方法[J]. 机械工程学报, 2013, 49(11):171-176. BIAN H Y, YANG G, LI Y, et al. Grouping parallel scan path generating method of metal laser deposition shaping[J]. Journal of Mechanical Engineering, 2013, 49(11):171-176.
[1] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[2] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[3] 朱郎平, 南海, 李建崇, 黄东, 罗倩. TC4预合金粉末模壳热等静压成型技术[J]. 材料工程, 2016, 44(7): 32-36.
[4] 任重, 黄兴元, 柳和生. 高聚物熔体锥形收敛流场分布的影响因素数值分析[J]. 材料工程, 2016, 44(3): 52-59.
[5] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[6] 龚伟, 周黎明, 王恩泽, 白朝中. Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟[J]. 材料工程, 2014, 0(9): 20-25.
[7] 明宪良, 陈静, 谭华, 杨海欧, 林鑫. 激光立体成形GH4169高温合金γ"相的高温粗化行为[J]. 材料工程, 2014, 0(8): 8-14.
[8] 乔印虎, 韩江, 张春燕, 陈杰平. 智能复合材料风力机叶片设计与有限元分析[J]. 材料工程, 2013, 0(5): 57-61.
[9] 郭昉, 张保国, 田欣利, 王健全, 李富强, 毛亚涛. 氮化硅陶瓷柱塞套油孔的超声振动加工[J]. 材料工程, 2013, 0(3): 22-26.
[10] 范世通, 汤海波, 张述泉, 王华明. 梯度复合材料热应力影响因素正交有限元分析[J]. 材料工程, 2012, 0(8): 1-4.
[11] 郭锋, 李平, 苏勋家, 侯根良, 谷建荣. LY12铝合金表面电火花强化层组织与性能研究[J]. 材料工程, 2010, 0(1): 28-31.
[12] 陈高升, 张连鸿, 栗付平, 覃海鹰, 李满福. 球面层状弹性轴承结构对其力学行为影响的有限元分析[J]. 材料工程, 2009, 0(10): 15-19.
[13] 郭运强, 张克实, 耿小亮, 刘芹, 秦亮. 基体性质对含涂层系统压痕响应的影响[J]. 材料工程, 2006, 0(6): 24-27.
[14] 何小东, 张建勋, 巩水利, 冯耀荣. TC4钛合金激光焊接应力变形有限元分析[J]. 材料工程, 2005, 0(8): 39-42,63.
[15] 刘勇, 尹钟大, 朱景川, 姜越. 工艺因素对TC4合金应力松弛行为的影响[J]. 材料工程, 2005, 0(4): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn