Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 49-58    DOI: 10.11868/j.issn.1001-4381.2018.001476
  综述 本期目录 | 过刊浏览 | 高级检索 |
蜂窝结构力学超材料弹性及抗冲击性能的研究进展
苏继龙, 吴金东, 刘远力
福建农林大学 机电工程学院, 福州 350002
Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial
SU Ji-long, WU Jin-dong, LIU Yuan-li
College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
全文: PDF(3766 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 具有手性蜂窝结构的力学超材料是近年来发展起来的高性能工程材料,它具有轻质、高比刚度、负泊松比、结构参数可调以及力学性能稳定等优点。其不仅可以实现面内变形,面外承载的双重力学作用,还具有出色的隔振、吸声降噪以及控制弹性波的传播等工程应用潜质,在智能结构、车辆船舶、航空航天等领域具有巨大的发展潜力。本文从其弹性和抗冲击两个力学性能方面进行综述。首先介绍并评述了近年来蜂窝结构力学超材料的面内杨氏模量、负泊松比特性以及面外剪切模量等弹性性能的理论分析研究进展。在抗冲击性能方面,从力学模型建立和有限元分析的角度出发,对手性蜂窝结构力学超材料在冲击载荷作用下的整体变形及其抗冲击性能的研究现状分别进行了评述。最后指出针对蜂窝结构力学超材料弹性及冲击性能的研究,可进一步建立内部韧带变形及力的传递力学模型以及深入探索冲击过程吸能机理等,以期为该类力学超材料内部韧带和节点环结构的优化设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏继龙
吴金东
刘远力
关键词 蜂窝结构力学超材料负泊松比弹性性能抗冲击性能    
Abstract:Mechanical metamaterial composed of chiral honeycomb structure is high performance engineering materials developed in recent years. They have the advantages of light weight, high specific stiffness, negative Poisson's ratio, adjustable structural parameters and stable mechanical properties. It not only can realize the dual mechanical functions of in-plane deformation and out-of-plane load-bearing, but also has excellent engineering application performance such as vibration isolation and sound absorption and noise reduction and control of elastic wave propagation. It has great potential in the fields of intelligent structure, vehicle, ship, aerospace and so on. Two mechanical aspects of its elastic properties and impact resistance were reviewed.First, the progress of theoretical analysis and research on the elastic properties such as the surface poplar modulus, negative Poisson's ratio, and elastic properties of external shear modulus of mechanical metamaterials were reviewed and commented. Further, in the aspect of impact resistance, the overall deformation and impact resistance of the existing chiral honeycomb mechanical metamaterials under impact load were reviewed based on perspectives of model establishment and finite element analysis. Finally, it was pointed out that in the further research of elasticity and impact properties, the mechanical model of internal ligament deformation and force transmission can be further established and the energy absorption mechanism of the impact process to be further explored so as to provide the reference for the optimization design of the internal structure of ligaments and node rings in this type of metamaterial.
Key wordshoneycomb structure mechanical metamaterial    negative Poisson's ratio    elastic property    impact resistance property
收稿日期: 2018-12-27      出版日期: 2019-08-22
中图分类号:  O347  
通讯作者: 苏继龙(1963-),男,教授,博士,主要研究方向为复合材料微结构多尺度设计,联系地址:福建省福州市福建农林大学机电工程学院(350002),E-mail:fjsu@163.com     E-mail: fjsu@163.com
引用本文:   
苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
SU Ji-long, WU Jin-dong, LIU Yuan-li. Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial. Journal of Materials Engineering, 2019, 47(8): 49-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001476      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/49
[1] WOJCHOWSKI K W. Two-dimensional isotropic system with a negative Poisson's ratio[J]. Physics Letters A,1989, 137(Suppl 1/2):60-64.
[2] GIBSON L J,ASHBY M F.Cellular solids:structure and proper-ties.2nd ed.[M].Cambridge:Cambridge University Press,1997.
[3] LIU H H. A review on auxetic structures and polymeric materials[J]. Scientific Research and Essays,2010,5(10):1052-1063.
[4] SPADONI A, RUZZENE M, GONELLA S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009,46(7):435-450.
[5] TEE K F, SPADONI A, SCARPA F, et al. Wave propagation in auxetic tetrachiral honeycombs[J]. Journal of Vibration and Acoustics,2010,132(3):1-8.
[6] 于相龙,周济.智能超材料研究与进展[J]. 材料工程, 2016, 44(7):119-128. YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering,2016, 44(7):119-128.
[7] 礼嵩明,蒋诗才,望咏林,等. "超材料"结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11):10-14. LI S M,JIANG S C,WANG Y L, et al. study on "metamaterial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11):10-14.
[8] LAKES R S. Foam structures with a negative Poisson's ratio[J]. Science, 1987,235:1038-1040.
[9] CHAN N, EVANS K E. Fabrication methods for auxetic foams[J]. Journal of Materials Science, 1997, 32(22):5945-5953.
[10] GIBSON L J, ASHBY M. Cellular solids[M]. Oxford:Pergamon Press,1988.
[11] LAKES R S. Deformation mechanisms of negative Poisson's ratio materials:structural aspects[J]. Journal of Materials Science, 1991, 26(9):2287-2292.
[12] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio-1[J]. International Journal of Mechanical and Science,1996,39:305-314.
[13] MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, antichiral, and hierarchical honeycombs:a simple energy-based approach[J]. Theoretical and Applied Mechanics Letters,2016,6(2):81-96.
[14] GIBSON L J, ASHBY M F. The mechanics of three-dimen-sional cellular materials[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1982, 382(1782):43-59.
[15] SPADONI A, RUZZENE M, SCARPA F. Global and local linear buckling behavior of a chiral cellular structure[J]. Physica Status Solidi (b), 2005, 242(3):695-709.
[16] SCARPA F, BLAIN S, LEW T, et al. Elastic buckling of hexagonal chiral cell honeycombs[J]. Composites Part A (Applied Science and Manufacturing), 2007,38(2):280-289.
[17] LORATO A, INNOCENTI P, SCARPA F, et al. The transver-se elastic properties of chiral honeycombs[J]. Composites Science and Technology, 2010, 70(7):1057-1063.
[18] ALDERSON A, ALDERSON K L, ATTATD D, et al. Elastic constants of 3-,4- and 6-connected chiral anti-chiral honey-combs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010,70(7):1042-1048.
[19] MILLER W, SMITH C W, SCARPA, F, et al. Flatwise buck-ling optimization of hexachiral and tetrachiral honey-combs[J]. Composites Science and Technology, 2010,70(7):1049-1056.
[20] CHEN Y J, SCARPA F, LIU Y J, et al. Elasticity of anti-tetrachiral anisotropic lattices[J]. International Journal of Solids and Structures,2013,50(6):996-1004.
[21] 赵显伟. 可变形蜂窝结构的力学性能分析[D]. 哈尔滨:哈尔滨工业大学, 2013. ZHAO X W.The analysis of mechanical properties of morphing honeycomb structures[D]. Harbin:Harbin Institute of Technology,2013.
[22] FU M H, LIU F M, HU L L. A novel category of 3D chiral material with negative Poisson's ratio[J]. Composites Science and Technology,2018,160:111-118.
[23] FU M H, ZHENG B B, LI W H. A novel chiral three-dimen-sional material with negative Poisson's ratio and the equivalent elastic parameters[J]. Composite Structures,2017,176:442-448.
[24] 徐时吟, 黄修长, 华宏星. 六韧带手性结构的能带特性[J]. 上海交通大学学报,2013, 47(2):167-172. XU S Y, HUANG X C, HUA H X. Study on the band structure of hexagonal chiral structures[J]. Journal of Shanghai Jiaotong University,2013,47(2):167-172.
[25] 牛斌, 阎军, 程耿东. 周期性蜂窝材料微极等效模型及其微观应力的一种快速算法[J].固体力学学报, 2008, 29(2):109-112. NIU B, YAN J, CHENG G D. Micropolar continuum modeling of 2D periodic cellular materials and a fast mapping algorithm for the micro-stress[J]. Chinese Journal of Solid Mechanics,2008,29(2):109-112.
[26] COTÉ F, DESHPANDE V S, FLECK N A, et al. The out-of-plane compressive behavior of metallic honeycombs[J]. Materials Science & Engineering A(Structural Materials:Properties, Microstructure and Processing), 2004, 380(1/2):272-280.
[27] 张大军, 余同希. 蜂窝材料面外受压时初始弹性失稳载荷的计算[J]. 上海交通大学学报,1990,24(5):47-55. ZHANG D J, YU T X. The calculation of the initial bucking load of honeycombs under out-of-plane compression[J]. Journal of Shanghai Jiaotong University,1990,24(5):47-55.
[28] 刘强, 黄争鸣. 金属蜂窝材料的弹塑性屈曲临界应力值[J]. 力学季刊,2008,29(4):515-520. LIU Q, HUANG Z M. Elasto-plastic buckling critical stress of metal honeycomb[J]. Chinese Quarterly of Mechanics, 2008,29(4):515-520.
[29] MOUSANEZHAD D, GHOSH R, AJDARI A, et al. Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening[J].International Journal of Mechanical Sciences, 2014, 89:413-422.
[30] ZHOU H, XU P, XIE S, et al. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs[J]. Composite Structures, 2018, 185:524-536.
[31] LI S Q, LI X, WANG Z H, et al. Sandwich panels with layered graded aluminum honeycomb cores under blast loading[J]. Composite Structures, 2017,173:242-254.
[32] LIU Q, FU J, WANG J S, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam[J].Composites Part B,2017,130:236-247.
[33] CHEN H, ALESSANDRO F, LIU S, et al. Effect of honey-comb core under hypervelocity impact:numerical simulation and engineering model[J]. Procedia Engineering, 2017, 204:83-91.
[34] QIAO J X, FEI Q G, ZHANG P W. In-plane crushing of a hierarchical honeycomb[J]. International Journal of Solids and Structures,2016, 85-86:57-66.
[35] CHEN Y Y, LI T T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations[J]. Materials & Design,2018,137:226-234.
[36] 鲁超,李永新,董二宝,等. 零泊松比蜂窝芯等效弹性模量研究[J]. 材料工程,2013(12):80-84. LU C, LI Y X, DONG E B, et al. Equivalent elastic modulus of zero Poisson's ratio honeycomb core[J]. Journal of Materials Engineering,2013(12):80-84.
[37] 李响,周幼辉,童冠. 类蜂窝结构的面内冲击特性研究[J]. 西安交通大学学报,2017,51(3):80-86. LI X, ZHOU Y H, TONG G. In-plane dynamic impact charact-eristic of the quasi-honeycomb structure[J]. Journal of Xi'an Jiaotong University,2017,51(3):80-86.
[38] 张政, 苏继龙. 六韧带手性蜂窝材料韧带的冲击动荷系数及稳定性分析[J]. 复合材料学报,2019,36(5):1313-1318. ZHANG Z, SU J L. Dynamic coefficient and stability analysis of ligament of impacted hexachiral honeycomb[J]. Acta Materiae Compositae Sinica,2019,36(5):1313-1318.
[39] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-a finite element study[J]. International Journal of Impact Engineering,2003,28(2):161-182.
[40] 张新春, 刘颖. 面内冲击载荷作用下蜂窝材料单胞动态变形机制的研究[J]. 科学技术与工程, 2007, 7(12):2799-2802. ZHANG X C, LIU Y. Dynamic deformation mechanism of cells with different shapes under in-plane impact loading[J]. Science Technology and Engineering,2007, 7(12):2799-2802.
[41] 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2):181-187. LU Z X, LI K. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion and Shock Waves,2014, 34(2):181-187.
[42] 张新春, 祝晓燕, 李娜. 六韧带手性蜂窝结构的动力学响应特性研究[J]. 振动与冲击, 2016, 35(8):1-7. ZHANG X C, ZHU X Y, LI N. A study of dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7.
[43] 卢子兴, 李康. 负泊松比蜂窝动态压溃行为的有限元模拟[J]. 机械强度, 2016,38(6):1237-1242. LU Z X, LI K. Dynamic crushing of honeycombs with a negative Poisson's ratio[J]. Journal of Mechanical Strength, 2016,38(6):1237-1242.
[44] 卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017,36(21):16-22. LU Z X, LI K. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock, 2017, 36(21):16-22.
[45] 李竞, 王宇, 吴红枚, 等. 具有负泊松比材料的研究进展[J]. 江西化工,2016(1):69-73. LI J, WANG N, WU H M, et al. Advances in research on with negative Poisson's ratio materials[J]. Journal of Jiangxi Chemical,2016(1):69-73.
[46] 章振华,谌勇,华宏星,等.抗冲瓦的结构研究及创新设计[J].噪声与振动控制,2012,32(6):100-104. ZHANG Z H, CHEN Y, HUA H X, et al. Research of anti-shock layer and innovation design[J]. Noise and Vibration Control,2012,32(6):100-104.
[47] 江坤, 陶猛. 六韧带手性蜂窝结构覆盖层的动态压缩行为研究[J]. 舰船科学技术, 2017, 39(19):55-60. JIANG K, TAO M. A study of the dynamic compression behavior of hexagonal honeycomb layer[J]. Ship Science and Technology, 2017, 39(19):55-60.
[48] 肖锋, 华宏星, 谌勇,等. 设计参数对手性蜂窝橡胶覆盖层水下爆炸抗冲击性能的影响[J]. 振动与冲击, 2014, 33(1):56-62. XIAO F, HUA H X,CHEN Y, et al. Influence of design parameters on underwater explosion shock resistance of chiral honeycomb rubber cladding[J]. Journal of Vibration and Shock,2014, 33(1):56-62.
[49] SPADONI A, RUZZENE M. Numerical and experimental anal-ysis of static compliance of chiral truss-core airfoils[J]. Journal of Mechanics of Materials and Structures, 2007, 2(5):965-981.
[50] 任宪奔,赵鹏铎,李晓彬,等. 改进型手性周期结构覆盖层的抗冲击性能研究[J]. 振动与冲击,2017,36(15):142-145. REN X B, ZHAO P D, LI X B, et al. Shock-resistant performance of cover layer on a new chiral periodic structure[J].Journal of Vibration and Shock,2017,36(15):142-145.
[51] 崔世堂,王波,张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报,2017,34(5):919-924. CUI S T, WANG B, ZHANG K. Mechanical behavior and energy absorption of honeycomb with negative Poisson's ratio under in-plane dynamic compression[J]. Chinese Journal of Applied Mechanics, 2017,34(5):919-924.
[52] 邢丽英,刘俊能. 蜂窝夹层结构吸波材料研究[J]. 材料工程,1992(6):15-18. XING L Y, LIU J N. The study of honeycomb sandwich microwave absorbing materials[J]. Journal of Materials Engineering, 1992(6):15-18.
[53] HOU Y, TAI Y H, LIRA C, et al. The bending and failure of sandwich structures with auxetic gradient cellular cores[J]. Applied Science and Manufacturing[J]. 2013, 49(3):119-131.
[54] 陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014. CHEN Y J. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin:Harbin Institute of Tech-nology,2014.
[1] 白江波, 熊峻江, 高军鹏, 益小苏. 间隙率对三轴向机织复合材料弹性性能的影响[J]. 材料工程, 2014, 0(3): 14-20.
[2] 李萍, 李丽, 谭家隆, 郝静燕, 王清. Cu-Zr-Al系Cu基非晶合金弹性性能与团簇结构的相关性[J]. 材料工程, 2009, 0(2): 15-18.
[3] 杨彩云, 田玲玲, 刘雍. 三维角联锁结构复合材料弹性性能的细观设计探讨[J]. 材料工程, 2007, 0(8): 3-7,11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn