1. Key Laboratory of Optoelectronic Chemical Materials and Devices(Ministry of Education), School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China;
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:A hydrothermal method was employed to synthetise NaV6O15 nanobelts, then nanobelts were annealed in air, the nanorods (NRs) were obtained at 350℃, which possess a length and diameter of 500nm and 100nm, respectively. NaV6O15 NRs as the electrode of supercapacitor exhibit significantly improved electrochemical performance compared with the untreated NaV6O15 electrode, and yield a high specific capacitance (402.8F/g at 300mA/g). Furthermore, the annealing treated nanorods show excellent cycling stability (80% capacitance retention after 1000 cycles at a scan rate of 100mV/s), this can be ascribed to that annealing turns the amorphous NaV6O15 into crystalline. These findings may further broaden the application of NaV6O15-based materials for high performance supercapacitors (SCs), aqueous rechargeable lithium batteries and Li-ion capacitors.
[1] 徐敏.分布式发电并网系统谐波检测与抑制方法研究[D]. 镇江:江苏大学,2014. XU M. On harmonic detection and suppression algorithms of grid-connected distributed generation system[D]. Zhenjiang:Jiangsu University,2014.
[2] XU Y,HAN X,ZHENG L,et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries:a new material of β-vanadium bronze M0.33V2O5 (M=Ag, Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38):14466-14472.
[3] 刘亚飞,陈彦彬.锂离子电池正极材料标准解读[J]. 储能科学与技术, 2018, 7(2):314-326. LIU Y F,CHEN Y B. Interpretation of cathode material standards for lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2):314-326.
[4] NGUYEN D,GIM J,MATHEW V,et al. Plate-type NaV3O8 cathode by solid state reaction for sodium-ion batteries[J]. ECS Electrochemistry Letters, 2014, 3:A69-A71.
[5] DONG Y F, LI S,ZHAO K N,et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4):1267-1275.
[6] AN C, WANG Y, HUANG Y, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy, 2014, 10:125-134.
[7] 李诗杰,张继刚,李金晓,等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7):157-164. LI S J,ZHANG J G, LI J X, et al. Preparation and electrochemical property og gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(7):157-164.
[8] 陈玮,孙晓刚,蔡满园,等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10):113-119. CHEN W,SUN X G,CAI M Y, et al. Carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(10):113-119.
[9] O'DWYER C,LAVAYEN V,TANNER D A,et al. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity[J]. Advanced Functional Materials, 2009, 19(11):1736-1745.
[10] WANG H,LIU S,REN Y, et al. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(3):6173-6179.
[11] KOHLER J,MAKIHARA H,UEGAITO H, et al. LiV3O8:characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1):59-65.
[12] WANG Y G,YI J,XIA Y Y. Recent progress in aqueous lithium-ion batteries[J]. Advanced Functional Materials, 2012, 2(7) 830-840.
[13] CHITHAIAH P,CHANDPAPPA G T,LIVAGE J. Formation of crystalline Na2V6O16·3H2O ribbons into belts and rings[J]. Inorganic Chemistry, 2012, 51(4):2241-2246.
[14] XU Y,HAN X,ZHENG L, et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries:a new material of β-vanadium bronze M0.33V2O5(M=Ag,Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38):14466-14472.
[15] SUN D,JIN G H,WANG H Y,et al. Aqueous rechargeable lithium batteries using NaV6O15nanoflakes as high performance anodes[J]. Journal of Materials Chemistry A, 2014, 2(32):12999-13005.
[16] ZHAI T,XIE S,YU M, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors[J]. Nano Energy, 2014, 8:255-263.
[17] WU H, LOU Z,YANG H, et al. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes[J]. Nanoscale, 2015, 7(5):1921-1926.
[18] LIU P C, ZHU K J, GAO Y F, et al. Recent progress in the applications of vanadium-based oxides on energy storage:from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication[J]. Advanced Functional Materials, 2017, 7(23):1700547
[19] MEHER S K, RAO G R. Ultralayered Co3O4 for high-performance supercapacitor applications[J]. The Journal of Physical Chemistry C, 2011, 115(31):15646-15654.
[20] ZHANG G Q, WU H B, HOSTER H E, et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[J]. Energy & Environmental Science, 2012, 5(11):9453-9456.
[21] CAI G,WANG X, CUI M, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy, 2015, 12:258-267.
[22] XIA X H,TU J P,ZHANG Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6):5531-5538.
[23] LIU X Y,ZHANG Y Q,XIA X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources, 2013, 239:157-163.