Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 105-112    DOI: 10.11868/j.issn.1001-4381.2018.001481
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
NaV6O15纳米杆的制备及其电化学性能
田玉1, 丁滔滔2, 朱小龙1, 郑广1, 詹志明1
1. 江汉大学 物理与信息工程学院 光电化学材料与器件教育部重点实验室, 武汉 430056;
2. 华中科技大学 武汉光电国家实验室, 武汉 430074
Synthesis and electrochemical property of NaV6O15 nanorods
TIAN Yu1, DING Tao-tao2, ZHU Xiao-long1, ZHENG Guang1, ZHAN Zhi-ming1
1. Key Laboratory of Optoelectronic Chemical Materials and Devices(Ministry of Education), School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China;
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(4207 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用水热法设计并成功地制备了NaV6O15纳米带,将纳米带在空气中退火,350℃时得到了NaV6O15纳米杆,其长度和直径分别为500nm和100nm。NaV6O15纳米杆作为超级电容器的电极材料,其电化学性能较未退火处理的纳米带有显著提高,在300mA/g比电容较高为402.8F/g。并且它具有良好的循环稳定性(扫描速率为100mV/s,1000次后电容保持约为80%),原因是退火将非晶态NaV6O15转变成了晶态的NaV6O15。这些发现可能进一步拓宽NaV6O15基材料在高性能超级电容器、水充电锂电池和锂离子电容器中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田玉
丁滔滔
朱小龙
郑广
詹志明
关键词 NaV6O15纳米带纳米杆超级电容器    
Abstract:A hydrothermal method was employed to synthetise NaV6O15 nanobelts, then nanobelts were annealed in air, the nanorods (NRs) were obtained at 350℃, which possess a length and diameter of 500nm and 100nm, respectively. NaV6O15 NRs as the electrode of supercapacitor exhibit significantly improved electrochemical performance compared with the untreated NaV6O15 electrode, and yield a high specific capacitance (402.8F/g at 300mA/g). Furthermore, the annealing treated nanorods show excellent cycling stability (80% capacitance retention after 1000 cycles at a scan rate of 100mV/s), this can be ascribed to that annealing turns the amorphous NaV6O15 into crystalline. These findings may further broaden the application of NaV6O15-based materials for high performance supercapacitors (SCs), aqueous rechargeable lithium batteries and Li-ion capacitors.
Key wordsNaV6O15    nanobelt    nanorod    supercapacitor
收稿日期: 2018-12-26      出版日期: 2019-10-12
中图分类号:  O646  
通讯作者: 田玉(1979-),女,副教授,博士,研究方向为半导体材料与器件,联系地址:湖北省武汉市沌口经济技术开发区江汉大学物理与信息工程学院(430056),E-mail:ytian@jhun.edu.cn     E-mail: ytian@jhun.edu.cn
引用本文:   
田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
TIAN Yu, DING Tao-tao, ZHU Xiao-long, ZHENG Guang, ZHAN Zhi-ming. Synthesis and electrochemical property of NaV6O15 nanorods. Journal of Materials Engineering, 2019, 47(10): 105-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001481      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/105
[1] 徐敏.分布式发电并网系统谐波检测与抑制方法研究[D]. 镇江:江苏大学,2014. XU M. On harmonic detection and suppression algorithms of grid-connected distributed generation system[D]. Zhenjiang:Jiangsu University,2014.
[2] XU Y,HAN X,ZHENG L,et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries:a new material of β-vanadium bronze M0.33V2O5 (M=Ag, Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38):14466-14472.
[3] 刘亚飞,陈彦彬.锂离子电池正极材料标准解读[J]. 储能科学与技术, 2018, 7(2):314-326. LIU Y F,CHEN Y B. Interpretation of cathode material standards for lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2):314-326.
[4] NGUYEN D,GIM J,MATHEW V,et al. Plate-type NaV3O8 cathode by solid state reaction for sodium-ion batteries[J]. ECS Electrochemistry Letters, 2014, 3:A69-A71.
[5] DONG Y F, LI S,ZHAO K N,et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4):1267-1275.
[6] AN C, WANG Y, HUANG Y, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy, 2014, 10:125-134.
[7] 李诗杰,张继刚,李金晓,等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7):157-164. LI S J,ZHANG J G, LI J X, et al. Preparation and electrochemical property og gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(7):157-164.
[8] 陈玮,孙晓刚,蔡满园,等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10):113-119. CHEN W,SUN X G,CAI M Y, et al. Carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(10):113-119.
[9] O'DWYER C,LAVAYEN V,TANNER D A,et al. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity[J]. Advanced Functional Materials, 2009, 19(11):1736-1745.
[10] WANG H,LIU S,REN Y, et al. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(3):6173-6179.
[11] KOHLER J,MAKIHARA H,UEGAITO H, et al. LiV3O8:characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1):59-65.
[12] WANG Y G,YI J,XIA Y Y. Recent progress in aqueous lithium-ion batteries[J]. Advanced Functional Materials, 2012, 2(7) 830-840.
[13] CHITHAIAH P,CHANDPAPPA G T,LIVAGE J. Formation of crystalline Na2V6O16·3H2O ribbons into belts and rings[J]. Inorganic Chemistry, 2012, 51(4):2241-2246.
[14] XU Y,HAN X,ZHENG L, et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries:a new material of β-vanadium bronze M0.33V2O5(M=Ag,Na) nanowires[J]. Journal of Materials Chemistry, 2011, 21(38):14466-14472.
[15] SUN D,JIN G H,WANG H Y,et al. Aqueous rechargeable lithium batteries using NaV6O15nanoflakes as high performance anodes[J]. Journal of Materials Chemistry A, 2014, 2(32):12999-13005.
[16] ZHAI T,XIE S,YU M, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors[J]. Nano Energy, 2014, 8:255-263.
[17] WU H, LOU Z,YANG H, et al. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes[J]. Nanoscale, 2015, 7(5):1921-1926.
[18] LIU P C, ZHU K J, GAO Y F, et al. Recent progress in the applications of vanadium-based oxides on energy storage:from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication[J]. Advanced Functional Materials, 2017, 7(23):1700547
[19] MEHER S K, RAO G R. Ultralayered Co3O4 for high-performance supercapacitor applications[J]. The Journal of Physical Chemistry C, 2011, 115(31):15646-15654.
[20] ZHANG G Q, WU H B, HOSTER H E, et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[J]. Energy & Environmental Science, 2012, 5(11):9453-9456.
[21] CAI G,WANG X, CUI M, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy, 2015, 12:258-267.
[22] XIA X H,TU J P,ZHANG Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6):5531-5538.
[23] LIU X Y,ZHANG Y Q,XIA X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources, 2013, 239:157-163.
[1] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[2] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[3] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[6] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[7] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[8] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[9] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[10] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[11] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[12] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[13] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[14] 郑玉婴, 曹宁宁. 氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展[J]. 材料工程, 2017, 45(6): 118-128.
[15] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn