Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 106-111    DOI: 10.11868/j.issn.1001-4381.2018.001498
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响
杜歌1, 魏莉1, 刘自双1, 武继民2, 陈子浩2,3,*(), 田丰2,*()
1 首都医科大学 附属北京康复医院 老年康复中心, 北京 100144
2 军事科学院 卫勤保障技术研究所, 天津 300161
3 中国人民解放军总医院 第六医学中心 航海航空医学中心, 北京 100048
Effects of γ-irradiation and EDC/NHS modification on property of collagen-chitosan scaffolds
Ge DU1, Li WEI1, Zi-shuang LIU1, Ji-min WU2, Zi-hao CHEN2,3,*(), Feng TIAN2,*()
1 Geriatric Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China
2 Institute of Health Service Support Technology, Academy of Military Sciences, Tianjin 300161, China
3 Aviation and Nautical Medical Center, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China
全文: PDF(3373 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以5%梯度制备11组壳聚糖质量分数为0%~50%的胶原壳聚糖支架。使用γ辐射和EDC/NHS分别改性处理各组胶原壳聚糖支架,采用傅里叶变换红外光谱仪(FTIR)和扫描电镜(SEM)分析支架内部结构,利用吸水率、孔隙率、降解率和力学性能等指标对其性能进行检测,研究γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响。结果表明:γ辐射和EDC/NHS改性均能使胶原与壳聚糖产生交联,壳聚糖的加入改善了γ辐射对支架分子结构的损伤;EDC/NHS改性支架的微结构好于γ辐射支架;两种改性支架壳聚糖较优,质量分数均为25%;γ辐射和EDC/NHS改性均能使支架产生取向结构。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜歌
魏莉
刘自双
武继民
陈子浩
田丰
关键词 胶原壳聚糖支架γ辐射EDC/NHS交联改性    
Abstract

With chitosan mass fraction changing from 0% to 50% by 5%, relative to collagen mass, the collagen-chitosan scaffolds were crosslinked by γ-irradiation and EDC/NHS. Fourier transform infrared spectroscopy (FTIR) and SEM were applied to analyze the structure. Water absorption rate, porosity, collagenase degradation and mechanical property were used to detect the properties. The effects of γ-irradiation and EDC/NHS modification on the properties of scaffolds were studied. The results show that both γ-irradiation and EDC/NHS modification induce crosslinking in collagen-chitosan scaffolds and chitosan greatly reduce the damage to molecular structure caused by γ-irradiation.The microstructure crosslinked by γ-irradiation is worse than those crosslinked by EDC/NHS. The optimal chitosan mass fraction is 25% for both γ-irradiation and EDC/NHS. γ-irradiation and EDC/NHS scaffold modification can lead to orientation structure.

Key wordscollagen-chitosan scaffold    γ-irradiation    EDC/NHS    crosslinking    modification
收稿日期: 2018-12-27      出版日期: 2020-05-28
中图分类号:  R318.08  
基金资助:天津市应用基础与前沿技术研究计划资助项目(13JCZDJC33400)
通讯作者: 陈子浩,田丰     E-mail: zjdyzxczh1111@126.com;tianfeng62037@163.com
作者简介: 田丰(1964-), 男, 研究员, 从事专业:急救材料与包装工程, 联系地址:北京市海淀区阜成路6号中国人民解放军总医院第六医学中心(100048), E-mail:tianfeng62037@163.com
陈子浩(1990-), 男, 助理研究员, 博士, 从事专业:生物医用材料, 联系地址:北京市海淀区阜成路6号中国人民解放军总医院第六医学中心(100048), E-mail:zjdyzxczh1111@126.com
引用本文:   
杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
Ge DU, Li WEI, Zi-shuang LIU, Ji-min WU, Zi-hao CHEN, Feng TIAN. Effects of γ-irradiation and EDC/NHS modification on property of collagen-chitosan scaffolds. Journal of Materials Engineering, 2020, 48(5): 106-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001498      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/106
Fig.1  γ辐射支架结构分析
(a)壳聚糖质量分数50%时γ辐射组和对照组的FTIR光谱图;(b)壳聚糖与胶原可能的交联反应
Fig.2  Non组(1),γ-ray组(2)和EDC组(3)不同壳聚糖质量分数时支架的SEM图
(a)0%;(b)25%;(c)50%
Non group/μm γ-ray group/μm EDC group/μm
0% 25% 50% 0% 25% 50% 0% 25% 50%
98.6±9.9 123.5±32.1 143.4±27.3 824.9±103.1 112.3±14.2 157.6±21.9 68.1±14.7 118.6±7.2 146.2±20.1
Table 1  3种壳聚糖质量分数下各组支架孔径
Fig.3  25%壳聚糖时3组支架的FTIR谱图
Fig.4  Non组,γ-ray组和EDC组在不同壳聚糖质量分数时的支架性能参数
(a)吸水率;(b)孔隙率;(c)横向弹性模量;(d)纵向弹性模量
Group Swelling ratio/% Porosity/% Transverse modulus/kPa Longitudinal modulus/kPa
Non 18.45±3.74 0.94±0.38 32.96±9.5 48.50±11.83
γ-ray 12.90±4.26 0.72±0.18 17.94±6.18 24.19±9.35
EDC 21.39±4.37 0.87±0.43 40.02±22.41 54.54±17.18
Table 2  3组支架的吸水率、孔隙率、横向和纵向弹性模量
Fig.5  3种不同壳聚糖质量分数时Non组, γ-ray组和EDC组支架在Ⅰ型胶原酶作用不同时间的降解率
1 YE K , RAED F , MOULTON S E , et al. Bioengineering of articular cartilage:past, present and future[J]. Regenerative Medicine, 2013, 8 (3): 333- 349.
doi: 10.2217/rme.13.28
2 YAN L P , WANG Y J , LI R , et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications[J]. Journal of Biomedical Materials Research Part A, 2010, 95 (2): 465- 475.
3 SIONKOWSKA A , WISNIEWSKI M , SKOPINSKA J , et al. Molecular interactions in collagen and chitosan blends[J]. Biomaterials, 2004, 25 (5): 795- 801.
doi: 10.1016/S0142-9612(03)00595-7
4 AKHTAR S . Evaluation of hydrogels for bio-printing applications[J]. Journal of Biomedical Materials Research Part A, 2013, 101 (1): 272- 284.
5 SAENGTHONG S , PIROONPAN T , TANGTHONG T , et al. Fabrication of microporous chitosan/silk fibroin as a scaffold material using electron beam[J]. Macromolecular Research, 2014, 22 (7): 717- 724.
doi: 10.1007/s13233-014-2103-0
6 CATALDO F , URSINI O , LILLA E , et al. Radiation-induced crosslinking of collagen gelatin into a stable hydrogel[J]. Journal of Radioanalytical & Nuclear Chemistry, 2008, 275 (275): 125- 131.
7 ZHANG Y Q , ZHANG X M , XU L , et al. Radiation cross-linked collagen/dextran dermal scaffolds:effects of dextran on cross-linking and degradation[J]. Journal of Biomaterials Science Polymer Edition, 2015, 26 (3): 162- 180.
doi: 10.1080/09205063.2014.985023
8 ZHANG X , XU L , HUANG X , et al. Structural study and preli-minary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation[J]. Journal of Biomedical Materials Research Part A, 2012, 100 (11): 2960- 2969.
9 YOKSAN R , AKASHI M , MIYATA M , et al. Optimal γ-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure[J]. Radiation Research, 2004, 161 (4): 471- 480.
doi: 10.1667/RR3125
10 CHIONO V , PULIERI E , VOZZI G , et al. Genipin-crosslinked chitosan/gelatin blends for biomedical applications[J]. Journal of Materials Science Materials in Medicine, 2008, 19 (2): 889- 898.
doi: 10.1007/s10856-007-3212-5
11 MADHAVAN K , BELCHENKO D , MOTTA A , et al. Evaluation of composition and crosslinking effects on collagen-based composite constructs[J]. Acta Biomaterialia, 2009, 6 (4): 1413- 1422.
12 STUART B H . Infrared spectroscopy:fundamentals and applications[J]. Experimental Thermodynamics, 2004, 41 (4): 325- 385.
13 LEE C R , GRODZINSKY A J , SPECTOR M . The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction and biosynthesis[J]. Biomaterials, 2001, 22 (23): 3145- 3154.
doi: 10.1016/S0142-9612(01)00067-9
14 SHANMUGASUNDARAM N , RAVICHANDRAN P , REDDY P N , et al. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells[J]. Biomaterials, 2001, 22 (14): 1943- 1951.
doi: 10.1016/S0142-9612(00)00220-9
15 MURUGAN R , RAMAKRISHNA S . Design strategies of tissue engineering scaffolds with controlled fiber orientation[J]. Tissue Engineering, 2007, 13 (8): 1845- 1866.
doi: 10.1089/ten.2006.0078
16 WANG Z , MA Y S , MU C Z . Preparation and biological characteristics of collagen-chitosan composite scaffold:proportion of chitosan and collagen[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14 (29): 5367- 5370.
[1] 欧阳果仔, 李新冬, 张鑫, 李海柯, 李浪, 李文豪, 钟招煌. 聚醚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 材料工程, 2022, 50(8): 160-168.
[2] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[3] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[4] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[5] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[6] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[7] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[8] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[9] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[10] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[11] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[12] 米志安, 李学宽, 肇研. 多尺度改性航空硅橡胶宽温域阻尼材料[J]. 材料工程, 2021, 49(12): 123-129.
[13] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[14] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[15] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn