Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 106-111    DOI: 10.11868/j.issn.1001-4381.2018.001498
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响
杜歌1, 魏莉1, 刘自双1, 武继民2, 陈子浩2,3, 田丰2
1. 首都医科大学 附属北京康复医院 老年康复中心, 北京 100144;
2. 军事科学院 卫勤保障技术研究所, 天津 300161;
3. 中国人民解放军总医院 第六医学中心 航海航空医学中心, 北京 100048
Effects of γ-irradiation and EDC/NHS modification on property of collagen-chitosan scaffolds
DU Ge1, WEI Li1, LIU Zi-shuang1, WU Ji-min2, CHEN Zi-hao2,3, TIAN Feng2
1. Geriatric Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China;
2. Institute of Health Service Support Technology, Academy of Military Sciences, Tianjin 300161, China;
3. Aviation and Nautical Medical Center, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China
全文: PDF(3373 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以5%梯度制备11组壳聚糖质量分数为0%~50%的胶原壳聚糖支架。使用γ辐射和EDC/NHS分别改性处理各组胶原壳聚糖支架,采用傅里叶变换红外光谱仪(FTIR)和扫描电镜(SEM)分析支架内部结构,利用吸水率、孔隙率、降解率和力学性能等指标对其性能进行检测,研究γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响。结果表明:γ辐射和EDC/NHS改性均能使胶原与壳聚糖产生交联,壳聚糖的加入改善了γ辐射对支架分子结构的损伤;EDC/NHS改性支架的微结构好于γ辐射支架;两种改性支架壳聚糖较优,质量分数均为25%;γ辐射和EDC/NHS改性均能使支架产生取向结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜歌
魏莉
刘自双
武继民
陈子浩
田丰
关键词 胶原壳聚糖支架&gamma辐射EDC/NHS交联改性    
Abstract:With chitosan mass fraction changing from 0% to 50% by 5%, relative to collagen mass, the collagen-chitosan scaffolds were crosslinked by γ-irradiation and EDC/NHS. Fourier transform infrared spectroscopy (FTIR) and SEM were applied to analyze the structure. Water absorption rate, porosity, collagenase degradation and mechanical property were used to detect the properties. The effects of γ-irradiation and EDC/NHS modification on the properties of scaffolds were studied. The results show that both γ-irradiation and EDC/NHS modification induce crosslinking in collagen-chitosan scaffolds and chitosan greatly reduce the damage to molecular structure caused by γ-irradiation.The microstructure crosslinked by γ-irradiation is worse than those crosslinked by EDC/NHS. The optimal chitosan mass fraction is 25% for both γ-irradiation and EDC/NHS. γ-irradiation and EDC/NHS scaffold modification can lead to orientation structure.
Key wordscollagen-chitosan scaffold    &gamma    -irradiation    EDC/NHS    crosslinking    modification
收稿日期: 2018-12-27      出版日期: 2020-05-28
中图分类号:  R318.08  
通讯作者: 田丰(1964-),男,研究员,从事专业:急救材料与包装工程,联系地址:北京市海淀区阜成路6号中国人民解放军总医院第六医学中心(100048),E-mail:tianfeng62037@163.com     E-mail: tianfeng62037@163.com
引用本文:   
杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
DU Ge, WEI Li, LIU Zi-shuang, WU Ji-min, CHEN Zi-hao, TIAN Feng. Effects of γ-irradiation and EDC/NHS modification on property of collagen-chitosan scaffolds. Journal of Materials Engineering, 2020, 48(5): 106-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001498      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/106
[1] YE K,RAED F,MOULTON S E,et al. Bioengineering of articular cartilage:past,present and future[J]. Regenerative Medicine,2013,8(3):333-349.
[2] YAN L P,WANG Y J,LI R,et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications[J]. Journal of Biomedical Materials Research Part A,2010,95(2):465-475.
[3] SIONKOWSKA A, WISNIEWSKI M, SKOPINSKA J, et al. Molecular interactions in collagen and chitosan blends[J]. Biomaterials,2004,25(5):795-801.
[4] AKHTAR S. Evaluation of hydrogels for bio-printing applications[J]. Journal of Biomedical Materials Research Part A,2013,101(1):272-284.
[5] SAENGTHONG S,PIROONPAN T,TANGTHONG T,et al. Fabrication of microporous chitosan/silk fibroin as a scaffold material using electron beam[J]. Macromolecular Research,2014,22(7):717-724.
[6] CATALDO F,URSINI O,LILLA E,et al. Radiation-induced crosslinking of collagen gelatin into a stable hydrogel[J]. Journal of Radioanalytical & Nuclear Chemistry,2008,275(275):125-131.
[7] ZHANG Y Q,ZHANG X M,XU L, et al. Radiation cross-linked collagen/dextran dermal scaffolds:effects of dextran on cross-linking and degradation[J]. Journal of Biomaterials Science Polymer Edition,2015,26(3):162-180.
[8] ZHANG X,XU L,HUANG X,et al. Structural study and preli-minary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation[J]. Journal of Biomedical Materials Research Part A,2012,100(11):2960-2969.
[9] YOKSAN R,AKASHI M,MIYATA M,et al. Optimal γ-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure[J]. Radiation Research,2004,161(4):471-480.
[10] CHIONO V, PULIERI E, VOZZI G, et al. Genipin-crosslinked chitosan/gelatin blends for biomedical applications[J]. Journal of Materials Science Materials in Medicine,2008,19(2):889-898.
[11] MADHAVAN K,BELCHENKO D,MOTTA A,et al. Evaluation of composition and crosslinking effects on collagen-based composite constructs[J]. Acta Biomaterialia,2009,6(4):1413-1422.
[12] STUART B H. Infrared spectroscopy:fundamentals and applications[J]. Experimental Thermodynamics,2004,41(4):325-385.
[13] LEE C R,GRODZINSKY A J,SPECTOR M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction and biosynthesis[J]. Biomaterials,2001,22(23):3145-3154.
[14] SHANMUGASUNDARAM N,RAVICHANDRAN P,REDDY P N,et al. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells[J]. Biomaterials,2001,22(14):1943-1951.
[15] MURUGAN R,RAMAKRISHNA S. Design strategies of tissue engineering scaffolds with controlled fiber orientation[J]. Tissue Engineering,2007,13(8):1845-1866.
[16] WANG Z,MA Y S,MU C Z. Preparation and biological characteristics of collagen-chitosan composite scaffold:proportion of chitosan and collagen[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2010,14(29):5367-5370.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[3] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[4] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[5] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[6] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[7] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[8] 赵亮, 李晓霞, 郭宇翔, 马德跃. 聚苯胺及其伪装应用研究进展[J]. 材料工程, 2019, 47(3): 42-49.
[9] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[10] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[11] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[12] 袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
[13] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[14] 徐腾威, 甘国友, 严继康, 李震宇, 郭根生, 易健宏. CeO2掺杂对Pb0.92Sr0.06Ba0.02-(Sb2/3Mn1/3)0.05Zr0.48Ti0.47O3基压电陶瓷相结构及性能的影响[J]. 材料工程, 2018, 46(5): 139-144.
[15] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn