Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites
Yun-chao QI1, Guo-dong FANG1,*(), Jun LIANG2,*(), Jun-bo XIE3
1 Science and Technology on Advanced Composites in Special Environments Key Laboratory, Harbin Institute of Technology, Harbin 150080, China 2 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China 3 Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
A surrogate model was established to optimize needling process parameters of three dimensional needled C/C-SiC composites by using back propagation (BP) neural network and improved genetic algorithm. The relationship between needling process parameters and composites stiffness was obtained. The stiffness prediction obtained by BP neural network is in good agreement with the finite element calculated results. The maximum error of training data is 0.526%, and the maximum error of test data is 0.454%. Thus, the BP neural network model exhibits the high prediction accuracy. The genetic and optimization strategies of genetic algorithm were improved to optimize the needling process parameters. The calculated needling process parameters by the model can significantly improve the stiffness of the C/C-SiC composites. The in-plane tensile modulus increase by 11.07% and 11.48%, and the out-of-plane tensile modulus increase by 49.64% and 48.13%, respectively. The comprehensive stiffness performance of composite material increase by 18.17% and 18.21%, respectively.
LI F , LIU J J , CHENG W , et al. Effect of technology parameters on mechanics performances of C/C composite needling perfabricat[J]. Carbon, 2004, (1): 25- 28.
doi: 10.3969/j.issn.1001-8948.2004.01.007
ZHANG X H , LI H J , HAO Z B , et al. Influence of needle-punching processing parameters on mechanical properties of C/C composites reinforced by carbon cloth and carbon fiber net[J]. Journal of Inorganic Materials, 2007, 22 (5): 963- 967.
doi: 10.3321/j.issn:1000-324x.2007.05.037
3
张盼.三维针刺C/C复合材料的微结构建模及力学性能预测[D].西安: 西北工业大学, 2016.
3
ZHANG P. Microstructure modeling and prediction of effective properties of 3D needled C/C composites[D]. Xi'an: Northwestern Polytechnical University, 2016.
4
宋磊磊.高性能纤维针刺毡三维重构及其复合材料性能表征[D].天津: 天津工业大学, 2016.
4
SONG L L. Three-dimensional reconstruction of high-performance fiber needle felt and characterization of composite material[D].Tianjin: Tianjin Polytechnic University, 2016.
5
KRUCINSKA I . The influence of technological parameters on the filtration efficiency of electret needled non-woven fabrics[J]. Journal of Electrostatics, 2002, 56 (2): 143- 153.
doi: 10.1016/S0304-3886(02)00060-8
BAI G H. Performance characterization and optimization of C/C composites based on GA and ANN[D]. Harbin: Harbin Institute of Technology, 2007.
7
VATANKHAH E , SEMNANI D , PRABHAKARAN M P , et al. Artificial neural network for modeling the elastic modulus of electro spun polycaprolactone/gelatin scaffolds[J]. Acta Biomaterialia, 2014, 10 (2): 709- 721.
doi: 10.1016/j.actbio.2013.09.015
8
YAN F , LIN Z B , WANG X Y , et al. Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm[J]. Composite Structures, 2017, 161, 441- 452.
doi: 10.1016/j.compstruct.2016.11.068
9
LIU G X , JIA L N , KONG B , et al. Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys[J]. Materials & Design, 2017, 129, 210- 218.
10
LIN Y , ZHENG Z Q , ZHANG H F , et al. Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy:experiment and BP neural network simulation[J]. Trans Nonferrous Met Soc China, 2013, 23 (6): 1728- 1736.
doi: 10.1016/S1003-6326(13)62655-2
11
WANG Z , MAK M C . Optimization of geometrical parameters for periodical structures applied to floating raft systems by genetic algorithms[J]. Applied Acoustics, 2018, 129, 108- 115.
doi: 10.1016/j.apacoust.2017.07.018
12
PAPPU S M J , GUMMADI S N . Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor[J]. Biochemical Engineering Journal, 2017, 120, 136- 145.
doi: 10.1016/j.bej.2017.01.010
13
D'ADDONA D M , TETI R . Genetic algorithm-based optimization of cutting parameters in turning processes[J]. Procedia CIRP, 2013, 7, 323- 328.
doi: 10.1016/j.procir.2013.05.055
14
XIE J B , LIANG J , FANG G D , et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology, 2015, 117, 69- 77.
doi: 10.1016/j.compscitech.2015.06.003
15
谢军波.针刺预制体工艺参数建模及复合材料本构关系研究[D].哈尔滨: 哈尔滨工业大学, 2012.
15
XIE J B. Parametric modeling of needling process and constitutive relationship of needled composite[D]. Harbin: Harbin Institute of Technology, 2016.
16
XU Y J , YOU T , DU C L . An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite[J]. Composite Structures, 2015, 122, 308- 315.
doi: 10.1016/j.compstruct.2014.11.052
17
朱凯, 王正林. 精通MATLAB神经网络[M]. 北京: 电子工业出版社, 2010.
17
ZHU K , WANG Z L . Proficient in MATLAB neural network[M]. Beijing: Publishing House of Electronics Industry, 2010.
18
周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999.
18
ZHOU M , SUN S D . Principle and application of genetic algorithm[M]. Beijing: National Defense Industry Press, 1999.
19
SRINVAS M , PATNAIK L M . Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on Systems, Man and Cybernetics:Part A, 1994, 24 (4): 656- 667.
doi: 10.1109/21.286385