Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 123-130    DOI: 10.11868/j.issn.1001-4381.2019.000042
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2219铝合金薄壁曲面件拉形过程变形均匀性
安立辉1,2, 苑世剑1
1. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001;
2. 中国运载火箭技术研究院, 北京 100076
Deformation uniformity of 2219 aluminum alloy thin-walled curved parts in stretch forming process
AN Li-hui1,2, YUAN Shi-jian1
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(5337 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为改善2219铝合金薄壁拉形曲面件的变形均匀性,建立基于Hill 1990各向异性屈服准则的有限元模型,利用ABAQUS软件对曲面件的应变分布规律进行数值模拟,分析加载路径和板坯形状对拉形变形均匀性的影响规律。结果表明:加载路径和板坯形状对曲面件的变形均匀性有较大影响。采用折线路径,开始加载时使板材发生压缩失稳从而形成一定拱形,不仅可缓解左侧钳口附近的破裂倾向,还可增加曲面件右侧变形量,从而提高其变形均匀性。此外,减小变形量不足位置对应的板坯宽度,如采用中间窄板坯或左侧宽板坯,使其在拉形时所受应力增加,从而提高其变形量,也可实现变形均匀性的改善。最终,利用矩形板坯,经两次转折的实验路径进行拉形,获得了表面质量良好的高性能2219铝合金薄壁曲面件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安立辉
苑世剑
关键词 拉形2219铝合金薄壁曲面件加载路径板坯形状    
Abstract:In order to improve the deformation uniformity of stretch formed 2219 aluminum alloy thin-walled curved parts, the finite element model based on Hill 1990 anisotropic yield criterion was established and their strain distribution was simulated numerically by using the ABAQUS software. On this basis, the effects of loading path and blank shape on the uniformity of stretching deformation were analysed. Results show that both of the loading path and the blank shape have great influence on the deformation uniformity of the curved parts. If the zigzag paths are used, the 2219 aluminum alloy sheet is compressed at the beginning of loading until it becomes to be a certain arch. In this case, not only the rupture tendency near the left clamp can be alleviated, but also the deformation on the right side of the curved part can increase, so as the deformation uniformity can be improved. Moreover, the deformation uniformity can also be improved by reducing the sheet width where the deformation is insufficient. For example, the sheet with small size in the middle or the trapezoid sheet with larger size in left is recommended. In this case, the stress increases in the narrow area during the stretching process, which makes it undergo greater deformation. In the end, the high performance 2219 aluminum alloy curved parts with good surface quality are obtained by stretch forming of rectangular sheet under a zigzag path.
Key wordsstretch forming    2219 aluminum alloy    thin-walled curved part    loading path    blank shape
收稿日期: 2019-01-14      出版日期: 2020-04-23
中图分类号:  TG389  
通讯作者: 苑世剑(1963-),男,教授,博士,主要研究方向为材料塑性成形理论与技术研究,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学材料学院430信箱(150001),E-mail:syuan@hit.edn.cn     E-mail: syuan@hit.edn.cn
引用本文:   
安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
AN Li-hui, YUAN Shi-jian. Deformation uniformity of 2219 aluminum alloy thin-walled curved parts in stretch forming process. Journal of Materials Engineering, 2020, 48(4): 123-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000042      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/123
[1] HIGUCHI K, TAKEUCHI S, SATO E, et al. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket[J]. Acta Astronautica, 2005, 57(2/8):432-437.
[2] 熊焕. 低温贮箱及铝锂合金的应用[J]. 导弹与航天运载技术, 2001(6):33-40. XIONG H. Cryogenic tank and application of aluminum-lithium alloy[J]. Missiles and Space Vehicles, 2001(6):33-40.
[3] 王祝堂. 长征五号火箭燃料箱铝合金打造[J]. 有色金属加工, 2017, 46(2):6-9. WANG Z T. Aluminum alloy fuel tank of Long March-5 rocket[J]. Nonferrous Metals Processing, 2017, 46(2):6-9.
[4] 刘燕. 贮箱用2219铝合金热处理工艺的研究[D]. 天津:天津大学, 2013. LIU Y. Study on the heat treatment process of the 2219 aluminum alloy for the tank[D]. Tianjin:Tianjin University, 2013.
[5] 李辉,孙斌,丁森. 火箭贮箱箱底瓜瓣拉深成形数值模拟[J]. 上海航天, 2012, 29(4):54-58. LI H, SUN B, DING S. Numerical simulation of stretch forming process of rocket tank bottom's melon petals spares[J]. Aerospace Shanghai, 2012, 29(4):54-58.
[6] 王强,吴建军,张深,等. 蒙皮拉伸成形装备及其数值模拟研究[J]. 航空制造技术, 2014(10):55-60. WANG Q, WU J J, ZHANG S, et al. Research on skin stretch-forming equipments and numerical simulation technology[J]. Aeronautical Manufacturing Technology, 2014(10):55-60.
[7] LIU W, AN L, YUAN S. Enhancement on deformation uniformity of double curvature shell by hydroforming process and curved blank-holder surface[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5/8):1913-1922.
[8] BLUNCK R D, KRANTZ D E. Room temperature stretch forming of scale space shuttle external tank dome gores[R]. San Diego:National Aeronautics and Space Administration, 1974:1-29.
[9] 李剑飞,贾国明,李细锋,等. 蒙皮拉形中橘皮缺陷的研究进展[J]. 模具技术, 2018(2):55-63. LI J F, JIA G M, LI X F, et al. Research progress of orange peel defect during stretch forming of aircraft skin[J]. Die and Mould Technology, 2018(2):55-63.
[10] WANG H, YI Y, HUANG S. Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings[J]. Journal of Alloys and Compounds, 2016, 685:941-948.
[11] 何德华,李东升,吴志敏,等. 蒙皮数控拉形位移加载设计方法研究[J]. 中国机械工程, 2010, 21(2):137-140. HE D H, LI D S, WU Z M, et al. Design of displacement loading for aircraft skin in NC stretch forming[J]. China Mechanical Engineering, 2010, 21(2):137-140.
[12] 张杰刚,李继光,周超,等. 拉形轨迹对铝合金贮箱箱底瓜瓣拉形成形影响[C]//中国机械工程学会塑性工程学会. 第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集. 济南:中国机械工程学会,2017:928-932. ZHANG J G, LI J G, ZHOU C, et al. Effect of the trajectory on stretch forming of melon shaped bottom in aluminum alloy tank[C]//Proceedings of the 15th National Plastic Engineering Academic Annual Meeting and the 7th Global Chinese Plasticity Technology Symposium. Jinan:China Mechanical Engineering Society, 2017:928-932.
[13] VOLZ M P, CHEN P S, GORTI S, et al. Development of aluminum-lithium 2195 gores by the stretch forming process[C]//National Space & Missile Materials Symposium (NSMMS). Huntsville, AL:NSMMS, 2014:3692.
[14] 王鹰宇.Abaqus分析用户手册——材料卷[M].北京:机械工业出版社, 2018:454-461. WANG Y Y. Abaqus analysis user's guide:materials volume[M]. Beijing:China Machine Press, 2018:454-461.
[15] CAI Y, WANG X S, YUAN S J. Analysis of surface roughening behavior of 6063 aluminum alloy by tensile testing of a trapezoidal uniaxial specimen[J]. Materials Science and Engineering:A, 2016, 672:184-193.
[1] 栗慧, 邹家生, 姚君山, 彭浩平. 2219高强铝合金活性TIG焊工艺[J]. 材料工程, 2018, 46(4): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn