Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 46-54    DOI: 10.11868/j.issn.1001-4381.2019.000043
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AZ31镁合金棒材循环扭转变形及其对力学性能的影响
宋广胜1, 纪开盛1, 张士宏2
1. 沈阳航空航天大学 材料科学与工程学院, 沈阳 110036;
2. 中国科学院 金属研究所, 沈阳 110016
Cyclic torsion of AZ31 magnesium alloy rod and its effect on mechanical property
SONG Guang-sheng1, JI Kai-sheng1, ZHANG Shi-hong2
1. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China;
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6786 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在室温条件下,对AZ31镁合金挤压棒材进行循环扭转变形,测试了扭转变形过程的力学性能以及变形后的微观组织和织构特征,并对扭转变形对镁合金棒材的力学性能影响进行了分析。结果表明:镁合金棒材在循环扭转过程中得到了严格对称的应力-应变滞回线,并且随着循环周期的增加,由于加工硬化和内部微裂纹扩展的共同影响,应力-应变滞回线上的应力峰值呈现先增加后减小的特征。在最大扭转角分别为60°和90°条件下,应力峰值出现在第四周期。镁合金棒材扭转变形后的晶粒中出现大量的拉伸孪晶带,孪晶启动使晶粒的C轴转向棒材轴线方向。镁合金棒材扭转变形后的力学性能测试结果显示,循环扭转变形明显提高了镁合金棒材压缩变形的屈服强度,其值由扭转前的约100MPa最大提高至约200MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋广胜
纪开盛
张士宏
关键词 镁合金棒材循环扭转织构孪晶力学性能    
Abstract:The cyclic torsion was carried out on the extruded AZ31 magnesium alloy rods at room temperature by using a computer controlled torsion testing machine. The texture of initial extruded magnesium alloy rods was measured by the XRD technique, which displays a typical basal texture. The mechanical properties during deformation were measured, and the microstructure and texture feature after torsion were analyzed by the EBSD. Meanwhile, the effect of cyclic torsion on mechanical properties of magnesium alloy rods was also investigated. The results show that the symmetrical stress-strain hysteresis curves are obtained during the cyclic torsion of magnesium alloy rods, revealing that sliding is the dominant deformation mode during former torsions, moreover, the stress peak values of the hysteresis curves present an increasing first and then decreasing trend with the increase of cycle period, which is dominated by work hardening and internal micro-crack propagation. The stress peak forms at the 4th cycle under conditions of 60ånd 90°maximum torsion angles, respectively. Amounts of extension twinning bands formed within grains after torsion of magnesium alloy rods, c-axis of grains is rotated to the axial direction of bars caused by the activation of twinning. Mechanical properties of twisted magnesium alloy rods tested by computer controlled universal testing machine show that the compression yielding strength of magnesium alloy bars is increased by the cyclic torsion, the value of which is increased from about 100MPa before torsion to about 200MPa after torsion at most.
Key wordsmagnesium alloy rod    cyclic torsion    texture    twinning    mechanical property
收稿日期: 2019-01-14      出版日期: 2019-09-18
中图分类号:  TG146.2  
通讯作者: 宋广胜(1971-),男,副教授,博士,主要从事镁合金塑性成形工艺及机理研究,联系地址:辽宁省沈阳市沈北新区道义南大街37号沈阳航空航天大学材料科学与工程学院(110036),E-mail:songgs17@163.com     E-mail: songgs17@163.com
引用本文:   
宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
SONG Guang-sheng, JI Kai-sheng, ZHANG Shi-hong. Cyclic torsion of AZ31 magnesium alloy rod and its effect on mechanical property. Journal of Materials Engineering, 2019, 47(9): 46-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000043      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/46
[1] 江海涛,段晓鸽,蔡正旭,等. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程,2015,43(8):7-12. JIANG H T, DUAN X G, CAI Z X, et al. Superplastic process and deformation mechanism of asymmetrically rolled AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2015, 43(8):7-12.
[2] 夏伟军,蔡建国,陈振华,等. 异步轧制AZ31镁合金的微观组织与室温成形性能[J]. 中国有色金属学报,2010, 20(7):1247-1253. XIA W J, CAI J G, CHEN Z H, et al. Microstructure and room temperature formability of AZ31 magnesium alloy produced by differential speed rolling[J]. The Chinese Journal of Nonferrous Metals, 2010,20(7):1247-1253.
[3] 潘瑜,张殿涛,谭雨宁,等. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报,2017, 53(10):1357-1363. PAN Y, ZHANG D T, TAN Y N, et al. Mechanical properties of biomedical ultrafine grained Mg-3Sn-0.5Mn alloy processed by equal-channel angular pressing[J]. Acta Metallurgica Sinica, 2017, 53(10):1357-1363.
[4] 郑留伟,王红霞,阴耀鹏,等. ECAP制备Mg-15Al-xNd合金的显微组织及高温力学性能[J]. 材料热处理学报,2016,37(6):61-66. ZHENG L W, WANG H X, YIN Y P, et al. Microstructure and elevated temperature mechanical properties of ECAP Mg-15Al-xNd alloys[J]. Transactions of Materials and Heat Treatment, 2016, 37(6):61-66.
[5] 刘鹏,江海涛,段晓鸽,等. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响[J]. 材料工程,2014(12):1-10. LIU P, JIANG H T, DUAN X G, et al. Effects of Yttrium(Y)and Cerium(Ce)on microstructure and stretch formability of hot rolled Mg-1.5Zn magnesium sheet at room temperature[J]. Journal of Materials Engineering, 2014(12):1-10.
[6] 曾小勤,史枭颖. 稀土镁合金强韧性设计与开发[J]. 航空材料学报,2017, 37(1):18-25. ZENG X Q, SHI X Y. Strengthening and toughening design and development of Mg-rare earth alloys[J]. Journal of Aeronautical Materials, 2017, 37(1):18-25.
[7] 张东阳,王林生,郭斗斗. 稀土镁合金性能研究及应用[J]. 材料导报,2015, 29(26):514-528. ZHANG D Y, WANG L S, GUO D D. Research and application of rare earth magnesium alloy[J]. Materials Review, 2015, 29(26):514-528.
[8] GENG C J, WU B L, DU X L, et al. Stress-strain response of textured AZ31B magnesium alloy under uniaxial tension at the different strain rates[J]. Materials Science and Engineering:A, 2013, 559:307-313.
[9] 黄洪涛,ANDREW G,刘伟,等. 多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J]. 金属学报,2013, 49(8):932-938. HUANG H T, ANDREW G, LIU W,et al. Deformation behavior of AZ31 magnesium alloy during multiaxial compression by EBSD tracking[J]. Acta Metallurgica Sinica, 2013, 49(8):932-938.
[10] 刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报,2010, 46(11):1458-1472. LIU Q. Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metallurgica Sinica, 2010, 46(11):1458-1472.
[11] SPIGARELLI S, RUANO O A, EL MEHTEDI M, et al. High temperature deformation and microstructural instability in AZ31 magnesium alloy[J]. Materials Science and Engineering:A, 2013, 570:135-148.
[12] PARK S H, HONG S G, BANG W, et al. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy[J]. Materials Science and Engineering:A, 2010, 527:417-423.
[13] GUO N, SONG B, GUO C F, et al. Improving tensile and compressive properties of magnesium alloy rods via a simple pre-torsion deformation[J]. Materials & Design, 2015, 83:270-275.
[14] SONG B, GUO N, XIN R L,et al. Strengthening and toughening of extruded magnesium alloy rod by combine pre-torsion deformation with subsequent annealing[J]. Materials Science and Engineering:A, 2016, 650:300-304.
[15] WANG J, ZHANG D X, LI Y, et al. Effect of initial orientation on the microstructure and mechanical properties of textured AZ31 Mg alloy during torsion and annealing[J]. Materials & Design, 2015, 86:526-535.
[16] BISWAS S, BEAUSIR B, TOTH L S, et al. Evolution of texture and microstructure during hot torsion of a magnesium alloy[J]. Acta Materialia, 2013, 61:5263-5277.
[17] BEAUSIR B, TOTH L S, NEALE K W, et al. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear[J]. Acta Materialia, 2007, 55:2695-2705.
[18] GUO X Q, WU W, WU P D, et al. On the swift effect and twinning in a rolled magnesium alloy under free-end torsion[J]. Scripta Materialia, 2013, 69:319-322.
[19] ZHANG J X, YU Q, JIANG Y Y, et al. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy[J]. International Journal of Plasticity, 2011, 27:768-787.
[20] YU Q, ZHANG J X, JIANG Y Y, et al. Multiaxial fatigue of extruded AZ61A magnesium alloy[J]. International Journal of Fatigue, 2011, 33:437-447.
[21] ALBINMOUSA J, JAHED H, LAMBERT S. Cyclic behaviour of wrought magnesium alloy under multiaxial load[J]. International Journal of Fatigue, 2011, 33:1127-1139.
[22] ALBINMOUSA J, JAHED H, LAMBERT S. Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy[J]. International Journal of Fatigue, 2011, 33:1403-1416.
[23] JAHED H, ALBINMOUSA J. Multiaxial behaviour of wrought magnesium alloys-a review and suitability of energy-based fatigue life model[J]. Theoretical and Applied Fracture Mechanics, 2014, 73:97-108.
[24] LI L L, ZHANG Z J, ZHANG P, et al. Dislocation arrangements within slip bands during fatigue cracking[J]. Materials Characterization, 2018, 145:96-100.
[25] GENÉE J, SIGNOR L, VILLECHAISE P. Slip transfer across grain/twin boundaries in polycrystalline Ni-based superalloys[J]. Materials Science and Engineering:A, 2017, 701:24-33.
[26] GENG C J, WU B L, DU X L, et al. Low cycle fatigue behavior of the textured AZ31B magnesium alloy under the asymmetrical loading[J]. Materials Science and Engineering:A, 2013, 560:618-626.
[27] 林金保,任伟杰,王心怡. 挤压态ZK60镁合金室温拉-压不对称性研究[J]. 金属学报,2016, 52(3):264-270. LIN J B, REN W J, WANG X Y. Research on the tension-compression asymmetry of as-extruded ZK60 magnesium alloys at room temperature[J]. Acta Metallurgica Sinica, 2016, 52(3):264-270.
[28] HU J Q, GAO H, MENG Y X, et al. Effects of free-end torsion on the microstructure evolution and fatigue properties in an extruded AZ31 rod[J]. Materials Science and Engineering:A, 2018, 726:215-222.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[8] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn