Please wait a minute...
材料工程  2020, Vol. 48 Issue (4): 83-88    DOI: 10.11868/j.issn.1001-4381.2019.000065
  综述 本期目录 | 过刊浏览 | 高级检索 |
邓培淼1, 宁洪龙1, 谢伟广2, 刘贤哲1, 邓宇熹1, 姚日晖1, 彭俊彪1
1. 华南理工大学 发光材料与器件国家重点实验室, 广州 510640;
2. 暨南大学 广东省真空薄膜技术与新能源材料工程技术中心, 广州 510632
Research progress in stannous oxide thin film transistors
DENG Pei-miao1, NING Hong-long1, XIE Wei-guang2, LIU Xian-zhe1, DENG Yu-xi1, YAO Ri-hui1, PENG Jun-biao1
1. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China;
2. Guangdong Vacuum Film Technology and New Energy Material Engineering Technology Center, Jinan University, Guangzhou 510632, China
全文: PDF(1341 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 p型金属氧化物材料氧化亚锡由于其特有的光学和电学性能,使得其在催化、传感、光电器件等领域受到越来越多人的青睐。本文重点介绍了氧化亚锡在薄膜晶体管中的研究应用,薄膜晶体管作为显示器驱动面板核心部件,其在显示器中的作用至关重要。本文归纳了氧化亚锡薄膜晶体管的研究进展,对氧化亚锡微观性能分析、氧化亚锡薄膜材料制备以及晶体管制备方法等进行介绍。通过对氧化亚锡晶体结构以及电子结构进行详细介绍,探讨了氧化亚锡性能微观调控机制;并通过对氧化亚锡材料的制备以及器件的应用研究,分析了氧化亚锡薄膜晶体管所面临的器件电流开关比低的问题并展望其在互补金属氧化物半导体器件方向的前景,以期为制备稳定和环保的p型金属氧化物薄膜晶体管提供参考。
E-mail Alert
关键词 p型材料氧化亚锡薄膜晶体管微观调控机制    
Abstract:Due to its unique optical and electrical properties, p-type metal oxide materials stannous oxide has been favored by more and more people in various fields such as catalysis, sensing and optoelectronic devices.This paper focuses on the research and application of stannous oxide in thin film transistors. As a core component of display driver panels, thin film transistors play an important role in the display.The research progress of p-type stannous oxide thin film transistors was summarized in this paper, which includes the analysis of the microcosmic properties of stannous oxide, the preparation of stannous oxide thin film materials and the fabrication methods of transistors. By introducing the crystal and electronic structure of stannous oxide in details, the microcosmic regul-ation mechanism of the properties of tin oxide was discussed. Through the preparation of stannous oxide materials and the research and application of the devices, the problems of low current-to-switch ratio faced by stannous oxide thin film transistors were analyzed and their prospects in the direction of the complementary metal-oxide-semiconductor devices were put forward, in order to provide a refere-nce for the preparation of p-type metal oxide thin film transistors which are stable and eco-friendly.
Key wordsp-type material    stannous oxide    thin-film transistor    microcosmic regulation mechanism
收稿日期: 2019-01-18      出版日期: 2020-04-23
中图分类号:  TN386.1  
通讯作者: 姚日晖(1981-),男,副教授,博士,研究方向:光电材料及其器件,联系地址:广东省广州市天河区五山路381号华南理工大学材料科学与工程学院(510640),     E-mail:
邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
DENG Pei-miao, NING Hong-long, XIE Wei-guang, LIU Xian-zhe, DENG Yu-xi, YAO Ri-hui, PENG Jun-biao. Research progress in stannous oxide thin film transistors. Journal of Materials Engineering, 2020, 48(4): 83-88.
链接本文:      或
[1] WANG Z, NAYAK P K, CARAVEO-FRESCAS J A, et al. Recent developments in p-type oxide semiconductor materials and devices[J]. Advanced Materials, 2016, 28(20):3831-3892.
[2] SECOR E B, SMITH J, MAEKS T J, et al. High-performance inkjet-printed indium-gallium-zinc-oxide transistors enabled by embedded,chemically stable graphene electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17428-17434.
[3] LI Y S,HE J C, HSU S M, et al. Flexible complementary oxide-semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors[J]. IEEE Electron Device Letters, 2016, 37(1):46-49.
[4] WANG Z, Al-JAWHARI H A, NAYAK P K, et al. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer[J]. Scientific Reports, 2015, 5:9617-9620.
[5] MARTINS R F P, AHNOOD A, CORREIA N, et al. Recyclable, flexible, low-power oxide electronics[J]. Advanced Functional Materials, 2013, 23(17):2153-2161.
[6] RYU J H, BAEK G W, KIM S Y, et al. Spray-coated single walled carbon nanotubes as source and drain electrodes in SnO thin-film transistors[J]. Semiconductor Science and Technology, 2018, 33(7):075013-075016.
[7] OGO Y, HIRAMATSU H, NOMURA K, et al. P-channel thin-film transistor using p-type oxide semiconductor, SnO[J]. Applied Physics Letters, 2008, 93(3):032113-032116.
[8] LIU A, ZHU H, PARK W T, et al. Room-temperature solution-synthesized p-type copper (Ⅰ) iodide semiconductors for transparent thin-film transistors and complementary electronics[J]. Advanced Materials, 2018, 30(34):1802379-1802381.
[9] LI B S, AKIMOTO K, SHEN A. Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer[J]. Journal of Crystal Growth, 2009, 311(4):1102-1105.
[10] MATSUZAKI K, NOMURA K, YANAGI H, et al. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor[J]. Applied Physics Letters, 2008, 93(20):202107-202110.
[11] LIU A, MENG Y, ZHU H, et al. Electrospun p-type nickel oxide semiconducting nanowires for low-voltage field-effect transistors[J]. ACS Applied Materials & Interfaces, 2017, 10(31):25841-25849.
[12] LIU A, LIU G, ZHU H, et al. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric[J]. Applied Physics Letters, 2016, 108(23):233506-233509.
[13] WATSON G W. The origin of the electron distribution in SnO[J]. The Journal of Chemical Physics, 2001, 114(2):758-763.
[14] WALSH A, WATSON G W. Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory[J]. Physical Review:B, 2004, 70(23):235114-235117.
[15] TOGO A, OBA F, TANAKA I, et al. First-principles calculations of native defects in tin monoxide[J]. Physical Review:B, 2006, 74(19):195128-195131.
[16] SAJI K J, TIAN K, SNURE M, et al. 2D tin monoxide-an unexplored p-type VAN DER WAALS semiconductor:material characteristics and field effect transistors[J]. Advanced Electronic Materials, 2016, 2(4):1500453-1500457.
[17] OGO Y, HIRAMATSU H, NOMURA K, et al. Tin monoxide as an s-orbital-based p-type oxide semiconductor:electronic structures and TFT application[J]. Physica Status Solidi:A, 2009, 206(9):2187-2191.
[18] WAGER J F, YEH B, HOFFMAN R L, et al. An amorphous oxide semiconductor thin-film transistor route to oxide electronics[J]. Current Opinion in Solid State and Materials Science, 2014, 18(2):53-61.
[19] MILLER S A, GORAI P, AYDEMIR U, et al. SnO as a potential oxide thermoelectric candidate[J]. Journal of Materials Chemistry:C, 2017, 5(34):8854-8861.
[20] YAN LIANG L, TAO CAO H, BOCHEN X, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities[J]. Applied Physics Letters, 2012, 100(26):263502-263506.
[21] HAYASHI H, KATAYAMA S, HUANG R, et al. Selective fabrication of n-and p-type SnO films without doping[J]. Physica Status Solidi (RRL)-rapid Research Letters, 2015, 9(3):192-196.
[22] NOMURA K, KAMIYA T, HOSONO H. Ambipolar oxide thin-film transistor[J]. Advanced Materials, 2011, 23(30):3431-3434.
[23] LIANG L Y, LIU Z M, CAO H T, et al. Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method[J]. ACS Applied Materials & Interfaces,2010,2(4):1060-1065.
[24] LIANG L Y, LIU Z M, CAO H T, et al. The structure, optical and electrical properties of Y-doped SnO thin films and their p-type TFT application[J]. Journal of Physics:D, 2012, 45(8):085101-085104.
[25] PEI Y, LIU W, SHI J, et al. Fabrication and characterization of p-type SnO thin film with high c-axis preferred orientation[J]. Journal of Electronic Materials, 2016, 45(11):5967-5973.
[26] JIANG Y H, CHIU I C, KAO P K, et al. Influence of rapid-thermal-annealing temperature on properties of RF-sputtered SnOx thin films[J]. Applied Surface Science, 2015, 327:358-363.
[27] HSU P C, CHEN W C, TSAI Y T, et al. Sputtering deposition of p-type SnO films using robust Sn/SnO2 mixed target[J]. Thin Solid Films, 2014, 555:57-61.
[28] HSU P C, HSU C J, CHANG C H, et al. Sputtering deposition of p-type SnO films with SnO2 target in hydrogen-containing atmosphere[J]. ACS Applied Materials & Interfaces, 2014, 6(16):13724-13729.
[29] CARAVEO-FRESCAS J A, NAYAK P K, Al-JAWHARI H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering[J]. ACS Nano, 2013, 7(6):5160-5167.
[30] HAN J H, CHUANG Y J, PARK B K, et al. Growth of p-type tin (Ⅱ) monoxide thin films by atomic layer deposition from bis (1-dimethylamino-2-methyl-2propoxy) tin and H2O[J]. Chemistry of Materials, 2014, 26(21):6088-6091.
[31] WILDSMITH T, HILL M S, JOHNSON A L, et al. Exclusive formation of SnO by low temperature single-source AACVD[J]. Chemical Communications, 2013, 49(78):8773-8775.
[32] SHIMIZU M, USUI H, SAKAGUCHI H. Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition[J]. Journal of Power Sources, 2014, 248:378-382.
[33] HILL M S, JOHNSON A L, LOWE J P, et al. Aerosol-assisted CVD of SnO from stannous alkoxide precursors[J]. Dalton Transactions, 2016, 45(45):18252-18258.
[34] LIANG L Y, LIU Z M, CAO H T, et al. Improvement of phase stability and accurate determination of optical constants of SnO thin films by using Al2O3 capping layer[J]. ACS Applied Materials & Interfaces, 2010, 2(6):1565-1568.
[35] TOYAMA T, SEO Y, KONISHI T, et al. Optical absorption spectra of p-type tin monoxide thin films around their indirect fundamental gaps determined using photothermal deflection spectroscopy[J]. Thin Solid Films, 2014, 555:148-152.
[36] KIM S H, BAEK I H, KIM D H, et al. Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films[J]. Journal of Materials Chemistry:C, 2017, 5(12):3139-3145.
[37] SUNG S Y, JO K M, KIM S Y, et al. Structural, optical, and electrical properties of p-type SnO thin films deposited by reactive rf magnetron sputtering[J]. Journal of Nanoelectronics and Optoelectronics, 2012, 7(5):475-478.
[38] YAN LIANG L, TAO CAO H, BO CHEN X, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities[J]. Applied Physics Letters, 2012, 100(26):263502-263507.
[39] FORTUNATO E, BARROS R, BARQUINHA P, et al. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing[J]. Applied Physics Letters, 2010, 97(5):052105-052109.
[40] LEE H N, KIM H J, KIM C K. P-channel tin monoxide thin film transistor fabricated by vacuum thermal evaporation[J]. Japanese Journal of Applied Physics, 2010, 49(2R):020202-020206.
[41] NAYAK P K, CARAVEO-FRESCAS J A, WANG Z, et al. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer[J]. Scientific Reports, 2014, 4:4672-4676.
[42] HAN Y J, CHOI Y J, CHO I T, et al. Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer[J]. IEEE Electron Device Letters, 2014, 35(12):1260-1262.
[43] HAN Y J, CHOI Y J, JEONG C Y, et al. Environment-dependent bias stress stability of p-type SnO thin-film transistors[J]. IEEE Electron Device Letters, 2015, 36(5):466-468.
[44] OU C W, DHANANJAY, HO Z Y, et al. Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits[J]. Applied Physics Letters, 2008, 92(12):122113-122117.
[45] AL-JAWHARI H A, CARAVEO-FRESCAS J A, HEDHILI M N, et al. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures[J]. ACS Applied Materials & Interfaces, 2013, 5(19):9615-9619.
[46] CARAVEO-FRESCAS J A, ALSHAREEF H N. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors[J]. Applied Physics Letters, 2013, 103(22):222103-222106.
No related articles found!
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持