Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 32-42    DOI: 10.11868/j.issn.1001-4381.2019.000084
  增材制造与再制造专栏 本期目录 | 过刊浏览 | 高级检索 |
铝合金增材制造技术研究进展
郜庆伟1, 赵健1,2, 舒凤远3, 吕成成4, 齐宝亮5, 于治水1
1. 上海工程技术大学 材料工程学院, 上海 201620;
2. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
3. 哈尔滨工业大学(威海) 材料科学与工程学院, 山东威海 264209;
4. 江淮汽车股份有限公司乘用车制造公司, 合肥 230601;
5. 一汽轿车股份有限公司, 长春 130012
Research progress in aluminum alloy additive manufacturing
GAO Qing-wei1, ZHAO Jian1,2, SHU Feng-yuan3, LYU Cheng-cheng4, QI Bao-liang5, YU Zhi-shui1
1. College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
3. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China;
4. Anhui Jianghuai Automotive Co., Ltd. Passenger Car Manufacturing Company, Hefei 230601, China;
5. FAW Car Co., Ltd., Changchun 130012, China
全文: PDF(5388 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 铝合金是实现结构轻量化的首选材料,在航空航天、交通运输、船舶舰艇等领域具有广阔的应用前景。铝合金增材制造技术在复杂三维精密结构件的制造方面具有突出的优势和潜力,而且具有高效快速、成形结构可控性高等优点。关于铝合金增材制造技术的迅速发展,本工作从组织与性能、成形精度和质量、成形缺陷控制和数值模拟4个方面,着重介绍了铝合金增材制造的研究现状和最新成果,总结了当前研究存在的不足。在此基础上,对铝合金增材制造技术未来应关注的研究方向给出建议,即实现增材件微观组织控制、阐明增材件应力形成机理、提高增材件的成形精度、研究成形过程中的温度场分布规律等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郜庆伟
赵健
舒凤远
吕成成
齐宝亮
于治水
关键词 铝合金增材制造组织性能缺陷数值模拟    
Abstract:Aluminum alloy is the preferred material for lightweight structure, and has broad application prospects in aerospace, transportation and ships. The additive manufacturing of aluminum alloy possesses outstanding advantages and potential on fabricating complicated three-dimensional precision structural parts. Furthermore, this method can be characterized by its high efficiency and excellent structural properties. With regard to the rapid development of the aluminum alloy additive manufacturing, the research status and latest achievements of aluminum alloy fabricated with additive manufacturing from the aspects of structure and performance, precision and quality, controlling of defects and numerical simulation, and the shortcomings of current research were summarized. Based on these, the key issues that will be focused were summarized at last, including realizing the control of the micro-structure, clarifying the forming mechanism of the stress, improving the forming accuracy, and studying the distribution law of the temperature field in the forming process.
Key wordsaluminum alloy    additive manufacturing    microstructure and property    defect    numerical simulation
收稿日期: 2019-01-23      出版日期: 2019-11-21
中图分类号:  TG146.2+1  
基金资助: 
通讯作者: 赵健(1984-),男,讲师,博士,研究方向:高能束焊接、改性及增材制造技术,联系地址:上海市松江区龙腾路333号上海工程技术大学三号实验楼3109室(201620),E-mail:zhaojianhit@163.com     E-mail: zhaojianhit@163.com
引用本文:   
郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
GAO Qing-wei, ZHAO Jian, SHU Feng-yuan, LYU Cheng-cheng, QI Bao-liang, YU Zhi-shui. Research progress in aluminum alloy additive manufacturing. Journal of Materials Engineering, 2019, 47(11): 32-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000084      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/32
[1] 李权,王福德,王国庆,等.航空航天轻质金属材料电弧熔丝增材制造技术[J].航空制造技术,2018,61(3):74-82. LI Q,WANG F D,WANG G Q,et al.Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J].Aeronautical Manufacturing Technology,2018,61(3):74-82.
[2] 聂德键,罗铭强,陈文泗,等.交通运输用铝合金材料研究进展[J].有色金属加工,2016,45(5):15-18. NIE D J,LUO M Q,CHEN W S,et al.Review of research progress of aluminum alloys for transportation[J].Nonferrous Metals Processing,2016,45(5):15-18.
[3] 张波,方志刚,李向阳,等.铝合金船舶的腐蚀防护技术现状与展望[J].中国材料进展,2014(7):414-417. ZHANG B,FANG Z G,LI X Y,et al.Status and prospect of corrosion protection technology about aluminium alloy ship[J].Materials China,2014(7):414-417.
[4] 齐忠原,巫瑞智,王国军,等.铝合金在船舶和海洋工程中的应用[J].轻合金加工技术,2016,44(1):12-18. QI Z Y,WU R Z,WANG G J,et al.Application of aluminum alloys in shipping and ocean engineering[J].Light Alloy Fabrication Technology,2016,44(1):12-18.
[5] 王艳艳,吴茂永,曲华,等.特种铝合金精密成形技术及其在国防科技领域中的应用[J].精密成形工程,2017,9(3):51-54. WANG Y Y,WU M Y,QU H,et al.Special aluminum alloy precision forming technology and its application in the field of national defense science and technology[J].Journal of Netshape Forming Engineering,2017,9(3):51-54.
[6] 张新明,邓运来,张勇.高强铝合金的发展及其材料的制备加工技术[J].金属学报,2015,51(3):257-271. ZHANG X M,DENG Y L,ZHANG Y.Development of high strength aluminum alloys and processing techniques for the materials[J].Acta Metallurgica Sinica,2015,51(3):257-271.
[7] DURSUN T,SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J].Materials & Design,2014,56:862-871.
[8] 张新明,刘胜胆.航空铝合金及其材料加工[J].中国材料进展,2013,32(1):34-50. ZHANG X M,LIU S D.Aerocraft aluminum alloys and their materials processing[J].Materials China,2013,32(1):34-50.
[9] 庞彦国,王祝堂.铝及铝合金在高新兵器中的应用[J].轻合金加工技术,2018,46(6):1-7. PANG Y G,WANG Z T.Application of Al and Al alloys in hightech and new weapons[J].Light Alloy Fabrication Technology,2018,46(6):1-7.
[10] ZHANG X S,CHEN Y J,HU J L.Recent advances in the development of aerospace materials[J].Progress in Aerospace Sciences,2018,97:22-34.
[11] SRINIVAS M,BABU B S.A critical review on recent research methodologies in additive manufacturing[J].Materials Today:Proceedings, 2017, 4(8):9049-9059.
[12] BANDYOPADHYAY A,HEER B.Additive manufacturing of multi-material structures[J].Materials Science and Engineering:R,2018,129:1-16.
[13] WU B T,PAN Z X,DING D H,et al.A review of the wire arc additive manufacturing of metals:properties,defects and quality improvement[J].Journal of Manufacturing Processes,2018,35:127-139.
[14] 李帅,李崇桂,张群森,等.铝合金激光增材制造技术研究现状与展望[J].轻工机械,2017,35(3):98-101. LI S,LI C G,ZHANG Q S,et al.Research status and prospect of additive manufacturing in laser by aluminum alloy[J].Light Industry Machinery,2017,35(3):98-101.
[15] 赵晓明,齐元昊,于全成,等.AlSi10Mg铝合金3D打印组织与性能研究[J].铸造技术,2016,37(11):2402-2404. ZHAO X M,QI Y H,YU Q C,et al.Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing[J].Foundry Technology,2016,37(11):2402-2404.
[16] ROSCHLI A,GAUL K,BOULGER A,et al.Designing for big area additive manufacturing[J].Additive Manufacturing,2019,25:275-285.
[17] LIU Z Y,LI C,FANG X Y,et al.Energy consumption in additive manufacturing of metal parts[J].Procedia Manufacturing,2018,26:834-845.
[18] KATKAR R,TAFT R,GRANT G.3D volume rendering and 3D printing (additive manufacturing)[J].Dental Clinics of North America,2018,62(3):393-402.
[19] NGO T,KASHANI A,IMBALZANO G,et al.Additive manufacturing (3D printing):a review of materials,methods,applications and challenges[J].Composites:Part B,2018,143:172-196.
[20] THOMPSON M K,MORONI G,VANEKER T,et al.Design for additive manufacturing:trends,opportunities,considerations,and constraints[J].CIRP Annals-Manufacturing Technology,2016,65:737-760.
[21] HASELHUHN A,BUHR M,WIJNEN B,et al.Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing[J].Materials Science and Engineering:A,2016,673:511-523.
[22] BRICE C,SHENOY R,KRAL M,et al.Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J].Materials Science and Engineering:A,2015,648:9-14.
[23] ASGARI H,BAXTER C,HOSSEINKHANI K,et al.On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder[J].Materials Science and Engineering:A,2017,707:148-158.
[24] 黄丹,朱志华,耿海滨,等.5A06铝合金TIG丝材-电弧增材制造工艺[J].材料工程,2017,45(3):66-72. HUANG D,ZHU Z H,GENG H B,et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J].Journal of Materials Engineering,2017,45(3):66-72.
[25] ZUO H S,LI H J,QI L H,et al.Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique[J].Journal of Materials Science & Technology,2016,32(5):485-488.
[26] 柏久阳,王计辉,师建行,等.TIG增材制造4043铝合金薄壁零件组织及力学性能[J].焊接,2015(10):23-26. BAI J Y,WANG J H,SHI J X,et al.Microstructure and mechanical properties of 4043-Al alloy thin-walled components produced by additive manufacturing with TIG welding[J].Welding & Joining,2015(10):23-26.
[27] 孙承帅,张兆栋,刘黎明.激光诱导MIG电弧增材制造5356铝合金薄壁零件组织及力学性能[J].焊接技术,2017,46(5):47-50.
[28] SHIMIZU S,FUJII H T,SATO Y S,et al.Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061[J].Acta Materialia,2014,74:234-243.
[29] GUSSEV M N,SRIDHARAN N,THOMPSON Z,et al.Influence of hot isostatic pressing on the performance of aluminum alloy fabricated by ultrasonic additive manufacturing[J].Scripta Materialia,2018,145:33-36.
[30] RASHID R,MALLAVARAPU J,PALANISAMY S,et al.A comparative study of flexural properties of additively manufactured aluminium lattice structures[J].Materials Today:Proceedings,2017,4(8):8597-8604.
[31] 从保强,苏勇,齐铂金,等.铝合金电弧填丝增材制造技术研究[J].航天制造技术,2016(3):29-32. CONG B Q,SU Y,QI B J,et al.Wire + arc additive manufacturing for aluminum alloy deposits[J].Aerospace Manufacturing Technology,2016(3):29-32.
[32] 孙红叶,从保强,苏勇,等.Al-6.3Cu铝合金电弧填丝增材制造成形与组织性能[J].航空制造技术,2017,60(14):72-76. SUN H Y,CONG B Q,SU Y,et al.Geometry,microstructure and properties of wire+arc additive manufacturing Al-6.3Cu alloy deposits[J].Aeronautical Manufacturing Technology,2017,60(14):72-76.
[33] 王忻凯,邢丽,徐卫平,等.工艺参数对铝合金搅拌摩擦增材制造成形的影响[J].材料工程,2015,43(5):8-12. WANG X K,XING L,XU W P,et al.Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J].Journal of Materials Engineering,2015,43(5):8-12.
[34] 王忻凯. 铝合金搅拌摩擦增材制造工艺研究[D].南昌:南昌航空大学,2015. WANG X K. Process study on aluminum alloy by friction stir additive manufacturing[D]. Nanchang:Nanchang Hangkong University, 2015.
[35] AYARKWA K F,WILLIAMS S W,DING J.Assessing the effect of TIG alternating current time cycle on aluminium wire + arc additive manufacture[J].Additive Manufacturing,2017,18:186-193.
[36] BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting(HP SLM) of aluminum parts[J].Physics Procedia,2011,12:271-278.
[37] ABOULKHAIR N,EVERITT N,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Additive Manufacturing,2014,1/4:77-86.
[38] ANYALEBECHI P.Hydrogen-induced gas porosity formation in Al-4.5wt% Cu-1.4wt% Mg alloy[J].Journal of Materials Science,2013,48(15):5342-5353.
[39] ZHANG Q Y,WANG T T,YAO Z J,et al.Modeling of hydrogen porosity formation during solidification of dendrites and irregular eutectics in Al-Si alloys[J].Materialia,2018,4:211-220.
[40] GIRELLI L,TOCCI M,GELFI M,et al.Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy[J].Materials Science and Engineering:A,2019,739:317-328.
[41] MARTIN J,YAHATA B,HUNDLEY J,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549:365-369.
[42] KARTHIK G,PANIKAR S,RAM G,et al.Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles[J].Materials Science and Engineering:A,2017,679:193-203.
[43] MONTERO-SISTIAGA M,MERTENS R,VRANCKEN B,et al.Changing the alloy composition of Al7075 for better process ability by selective laser melting[J].Journal of Materials Processing Technology,2016,238:437-445.
[44] PLOTKOWSKI A,RIOS O,SRIDHARAN N,et al.Evaluation of an Al-Ce alloy for laser additive manufacturing[J].Acta Materialia,2017,126:507-519.
[45] UDDIN S,MURR L,TERRAZAS C,et al.Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J].Additive Manufacturing,2018,22:405-415.
[46] GU J L,DING J L,WILLIAMS S,et al.The effect of inter-layer cold working and post-deposition heattreatment on porosity in additively manufactured aluminum alloys[J].Journal of Materials Processing Technology,2016,230:26-34.
[47] GU J L,DING J L,WILLIAMS S,et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J].Materials Science and Engineering:A,2016,651:18-26.
[48] FOTEINOPOULOS P,PAPACHARALAMPOPOULOS A,STAVROPOULOS P.On thermal modeling of additive manufacturing processes[J].CIRP Journal of Manufacturing Science and Technology,2018,20:66-83.
[49] 李雅莉.选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D].南京:南京航空航天大学,2015. LI Y L.Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
[50] DU J,WANG X,BAI H,et al.Numerical analysis of fused-coating metal additive manufacturing[J].International Journal of Thermal Sciences,2017,114:342-351.
[51] McMILLAN M,LEARY M,BRANDT M.Computationally efficient finite difference method for metal additive manufacturing:a reduced-order DFAM tool applied to SLM[J].Materials & Design,2017,132:226-243.
[52] ZHANG Y W,LIU T,REN H,et al.Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures[J].Composite Structures,2018, 195:45-59.
[1] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[2] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[3] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[4] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[5] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[6] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[7] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[8] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[9] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[10] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[11] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[12] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[13] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[14] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[15] 刘承林, 苏海军, 张军, 刘林, 傅恒志. 静磁场对定向凝固镍基高温合金组织影响的研究进展[J]. 材料工程, 2019, 47(9): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn