1. College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
3. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China;
4. Anhui Jianghuai Automotive Co., Ltd. Passenger Car Manufacturing Company, Hefei 230601, China;
5. FAW Car Co., Ltd., Changchun 130012, China
Abstract:Aluminum alloy is the preferred material for lightweight structure, and has broad application prospects in aerospace, transportation and ships. The additive manufacturing of aluminum alloy possesses outstanding advantages and potential on fabricating complicated three-dimensional precision structural parts. Furthermore, this method can be characterized by its high efficiency and excellent structural properties. With regard to the rapid development of the aluminum alloy additive manufacturing, the research status and latest achievements of aluminum alloy fabricated with additive manufacturing from the aspects of structure and performance, precision and quality, controlling of defects and numerical simulation, and the shortcomings of current research were summarized. Based on these, the key issues that will be focused were summarized at last, including realizing the control of the micro-structure, clarifying the forming mechanism of the stress, improving the forming accuracy, and studying the distribution law of the temperature field in the forming process.
[1] 李权,王福德,王国庆,等.航空航天轻质金属材料电弧熔丝增材制造技术[J].航空制造技术,2018,61(3):74-82. LI Q,WANG F D,WANG G Q,et al.Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J].Aeronautical Manufacturing Technology,2018,61(3):74-82.
[2] 聂德键,罗铭强,陈文泗,等.交通运输用铝合金材料研究进展[J].有色金属加工,2016,45(5):15-18. NIE D J,LUO M Q,CHEN W S,et al.Review of research progress of aluminum alloys for transportation[J].Nonferrous Metals Processing,2016,45(5):15-18.
[3] 张波,方志刚,李向阳,等.铝合金船舶的腐蚀防护技术现状与展望[J].中国材料进展,2014(7):414-417. ZHANG B,FANG Z G,LI X Y,et al.Status and prospect of corrosion protection technology about aluminium alloy ship[J].Materials China,2014(7):414-417.
[4] 齐忠原,巫瑞智,王国军,等.铝合金在船舶和海洋工程中的应用[J].轻合金加工技术,2016,44(1):12-18. QI Z Y,WU R Z,WANG G J,et al.Application of aluminum alloys in shipping and ocean engineering[J].Light Alloy Fabrication Technology,2016,44(1):12-18.
[5] 王艳艳,吴茂永,曲华,等.特种铝合金精密成形技术及其在国防科技领域中的应用[J].精密成形工程,2017,9(3):51-54. WANG Y Y,WU M Y,QU H,et al.Special aluminum alloy precision forming technology and its application in the field of national defense science and technology[J].Journal of Netshape Forming Engineering,2017,9(3):51-54.
[6] 张新明,邓运来,张勇.高强铝合金的发展及其材料的制备加工技术[J].金属学报,2015,51(3):257-271. ZHANG X M,DENG Y L,ZHANG Y.Development of high strength aluminum alloys and processing techniques for the materials[J].Acta Metallurgica Sinica,2015,51(3):257-271.
[7] DURSUN T,SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J].Materials & Design,2014,56:862-871.
[8] 张新明,刘胜胆.航空铝合金及其材料加工[J].中国材料进展,2013,32(1):34-50. ZHANG X M,LIU S D.Aerocraft aluminum alloys and their materials processing[J].Materials China,2013,32(1):34-50.
[9] 庞彦国,王祝堂.铝及铝合金在高新兵器中的应用[J].轻合金加工技术,2018,46(6):1-7. PANG Y G,WANG Z T.Application of Al and Al alloys in hightech and new weapons[J].Light Alloy Fabrication Technology,2018,46(6):1-7.
[10] ZHANG X S,CHEN Y J,HU J L.Recent advances in the development of aerospace materials[J].Progress in Aerospace Sciences,2018,97:22-34.
[11] SRINIVAS M,BABU B S.A critical review on recent research methodologies in additive manufacturing[J].Materials Today:Proceedings, 2017, 4(8):9049-9059.
[12] BANDYOPADHYAY A,HEER B.Additive manufacturing of multi-material structures[J].Materials Science and Engineering:R,2018,129:1-16.
[13] WU B T,PAN Z X,DING D H,et al.A review of the wire arc additive manufacturing of metals:properties,defects and quality improvement[J].Journal of Manufacturing Processes,2018,35:127-139.
[14] 李帅,李崇桂,张群森,等.铝合金激光增材制造技术研究现状与展望[J].轻工机械,2017,35(3):98-101. LI S,LI C G,ZHANG Q S,et al.Research status and prospect of additive manufacturing in laser by aluminum alloy[J].Light Industry Machinery,2017,35(3):98-101.
[15] 赵晓明,齐元昊,于全成,等.AlSi10Mg铝合金3D打印组织与性能研究[J].铸造技术,2016,37(11):2402-2404. ZHAO X M,QI Y H,YU Q C,et al.Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing[J].Foundry Technology,2016,37(11):2402-2404.
[16] ROSCHLI A,GAUL K,BOULGER A,et al.Designing for big area additive manufacturing[J].Additive Manufacturing,2019,25:275-285.
[17] LIU Z Y,LI C,FANG X Y,et al.Energy consumption in additive manufacturing of metal parts[J].Procedia Manufacturing,2018,26:834-845.
[18] KATKAR R,TAFT R,GRANT G.3D volume rendering and 3D printing (additive manufacturing)[J].Dental Clinics of North America,2018,62(3):393-402.
[19] NGO T,KASHANI A,IMBALZANO G,et al.Additive manufacturing (3D printing):a review of materials,methods,applications and challenges[J].Composites:Part B,2018,143:172-196.
[20] THOMPSON M K,MORONI G,VANEKER T,et al.Design for additive manufacturing:trends,opportunities,considerations,and constraints[J].CIRP Annals-Manufacturing Technology,2016,65:737-760.
[21] HASELHUHN A,BUHR M,WIJNEN B,et al.Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing[J].Materials Science and Engineering:A,2016,673:511-523.
[22] BRICE C,SHENOY R,KRAL M,et al.Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J].Materials Science and Engineering:A,2015,648:9-14.
[23] ASGARI H,BAXTER C,HOSSEINKHANI K,et al.On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder[J].Materials Science and Engineering:A,2017,707:148-158.
[24] 黄丹,朱志华,耿海滨,等.5A06铝合金TIG丝材-电弧增材制造工艺[J].材料工程,2017,45(3):66-72. HUANG D,ZHU Z H,GENG H B,et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J].Journal of Materials Engineering,2017,45(3):66-72.
[25] ZUO H S,LI H J,QI L H,et al.Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique[J].Journal of Materials Science & Technology,2016,32(5):485-488.
[26] 柏久阳,王计辉,师建行,等.TIG增材制造4043铝合金薄壁零件组织及力学性能[J].焊接,2015(10):23-26. BAI J Y,WANG J H,SHI J X,et al.Microstructure and mechanical properties of 4043-Al alloy thin-walled components produced by additive manufacturing with TIG welding[J].Welding & Joining,2015(10):23-26.
[27] 孙承帅,张兆栋,刘黎明.激光诱导MIG电弧增材制造5356铝合金薄壁零件组织及力学性能[J].焊接技术,2017,46(5):47-50.
[28] SHIMIZU S,FUJII H T,SATO Y S,et al.Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061[J].Acta Materialia,2014,74:234-243.
[29] GUSSEV M N,SRIDHARAN N,THOMPSON Z,et al.Influence of hot isostatic pressing on the performance of aluminum alloy fabricated by ultrasonic additive manufacturing[J].Scripta Materialia,2018,145:33-36.
[30] RASHID R,MALLAVARAPU J,PALANISAMY S,et al.A comparative study of flexural properties of additively manufactured aluminium lattice structures[J].Materials Today:Proceedings,2017,4(8):8597-8604.
[31] 从保强,苏勇,齐铂金,等.铝合金电弧填丝增材制造技术研究[J].航天制造技术,2016(3):29-32. CONG B Q,SU Y,QI B J,et al.Wire + arc additive manufacturing for aluminum alloy deposits[J].Aerospace Manufacturing Technology,2016(3):29-32.
[32] 孙红叶,从保强,苏勇,等.Al-6.3Cu铝合金电弧填丝增材制造成形与组织性能[J].航空制造技术,2017,60(14):72-76. SUN H Y,CONG B Q,SU Y,et al.Geometry,microstructure and properties of wire+arc additive manufacturing Al-6.3Cu alloy deposits[J].Aeronautical Manufacturing Technology,2017,60(14):72-76.
[33] 王忻凯,邢丽,徐卫平,等.工艺参数对铝合金搅拌摩擦增材制造成形的影响[J].材料工程,2015,43(5):8-12. WANG X K,XING L,XU W P,et al.Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J].Journal of Materials Engineering,2015,43(5):8-12.
[34] 王忻凯. 铝合金搅拌摩擦增材制造工艺研究[D].南昌:南昌航空大学,2015. WANG X K. Process study on aluminum alloy by friction stir additive manufacturing[D]. Nanchang:Nanchang Hangkong University, 2015.
[35] AYARKWA K F,WILLIAMS S W,DING J.Assessing the effect of TIG alternating current time cycle on aluminium wire + arc additive manufacture[J].Additive Manufacturing,2017,18:186-193.
[36] BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting(HP SLM) of aluminum parts[J].Physics Procedia,2011,12:271-278.
[37] ABOULKHAIR N,EVERITT N,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting[J].Additive Manufacturing,2014,1/4:77-86.
[38] ANYALEBECHI P.Hydrogen-induced gas porosity formation in Al-4.5wt% Cu-1.4wt% Mg alloy[J].Journal of Materials Science,2013,48(15):5342-5353.
[39] ZHANG Q Y,WANG T T,YAO Z J,et al.Modeling of hydrogen porosity formation during solidification of dendrites and irregular eutectics in Al-Si alloys[J].Materialia,2018,4:211-220.
[40] GIRELLI L,TOCCI M,GELFI M,et al.Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy[J].Materials Science and Engineering:A,2019,739:317-328.
[41] MARTIN J,YAHATA B,HUNDLEY J,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549:365-369.
[42] KARTHIK G,PANIKAR S,RAM G,et al.Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles[J].Materials Science and Engineering:A,2017,679:193-203.
[43] MONTERO-SISTIAGA M,MERTENS R,VRANCKEN B,et al.Changing the alloy composition of Al7075 for better process ability by selective laser melting[J].Journal of Materials Processing Technology,2016,238:437-445.
[44] PLOTKOWSKI A,RIOS O,SRIDHARAN N,et al.Evaluation of an Al-Ce alloy for laser additive manufacturing[J].Acta Materialia,2017,126:507-519.
[45] UDDIN S,MURR L,TERRAZAS C,et al.Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J].Additive Manufacturing,2018,22:405-415.
[46] GU J L,DING J L,WILLIAMS S,et al.The effect of inter-layer cold working and post-deposition heattreatment on porosity in additively manufactured aluminum alloys[J].Journal of Materials Processing Technology,2016,230:26-34.
[47] GU J L,DING J L,WILLIAMS S,et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J].Materials Science and Engineering:A,2016,651:18-26.
[48] FOTEINOPOULOS P,PAPACHARALAMPOPOULOS A,STAVROPOULOS P.On thermal modeling of additive manufacturing processes[J].CIRP Journal of Manufacturing Science and Technology,2018,20:66-83.
[49] 李雅莉.选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D].南京:南京航空航天大学,2015. LI Y L.Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
[50] DU J,WANG X,BAI H,et al.Numerical analysis of fused-coating metal additive manufacturing[J].International Journal of Thermal Sciences,2017,114:342-351.
[51] McMILLAN M,LEARY M,BRANDT M.Computationally efficient finite difference method for metal additive manufacturing:a reduced-order DFAM tool applied to SLM[J].Materials & Design,2017,132:226-243.
[52] ZHANG Y W,LIU T,REN H,et al.Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures[J].Composite Structures,2018, 195:45-59.